Skip to main content

Advertisement

Log in

The ups and downs of somatic cell nucleus transfer (SCNT) in humans

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Achieving successful somatic cell nuclear transfer (SCNT) in the human and subhuman primate relative to other mammals has been questioned for a variety of technical and logistical issues. Here we summarize the gradual evolution of SCNT technology from the perspective of oocyte quality and cell cycle status that has recently led to the demonstration of feasibility in the human for deriving chromosomally normal stem cells lines. With these advances in hand, prospects for therapeutic cloning must be entertained in a conscientious, rigorous, and timely fashion before broad spectrum clinical applications are undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodriguez-Osorio N, Urrego R, Cibelli JB, Eilertsen K, Memili E. Reprogramming mammalian somatic cells. Theriogenology. 2012;78:1869–86.

    Article  PubMed  CAS  Google Scholar 

  2. Narbonne P, Miyamoto K, Gurdon JB. Reprogramming and development in nuclear transfer embryos and in interspecific system. Curr Opin Genet Dev. 2012;22:450–8.

    Article  PubMed  CAS  Google Scholar 

  3. Noggle S, Fung HL, Gore A, Martinez H, Satriani KG, Prosser R, et al. Human oocytes reprogram somatic cells to a pluripotent state. Nature. 2011;478:70–5.

    Article  PubMed  CAS  Google Scholar 

  4. Yu Y, Yan J, Li M, Yan L, Zhao Y, Lian Y, et al. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-I on human oocyte maturation and early fertilized and cloned embryo development. Hum Reprod. 2012;27:2146–59.

    Article  PubMed  CAS  Google Scholar 

  5. Tachibana M, Amato P, Sparman M, Gutierrez MM, Tipner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;1228–38.

  6. Kishigami S, Wakayama S, Van Thuan N, Ohta H, Mizutani E, Hikichi T, et al. Production of cloned mice by somatic cell nuclear transfer. Nat Protoc. 2006;1:125–38.

    Article  PubMed  CAS  Google Scholar 

  7. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;386:810–3.

    Article  Google Scholar 

  8. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10:678–84.

    Article  PubMed  CAS  Google Scholar 

  9. Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc B Biol Sci. 2013;368:20110329.

    Article  Google Scholar 

  10. Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res. 2013;23:33–48.

    Article  PubMed  CAS  Google Scholar 

  11. Gurdon JB. Nuclear reprogramming in eggs. Nat Med. 2009;15:1141–4.

    Article  PubMed  CAS  Google Scholar 

  12. Willadsen SM. Nuclear transplantation in sheep embryos. Nature. 1986;320:63–5.

    Article  PubMed  CAS  Google Scholar 

  13. Sims M, First NL. Production of calves by transfer of nuclei from cultured inner cell mass cell. Proc Natl Acad Sci USA. 1994;91:6143–7.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell KHS, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6.

    Article  PubMed  CAS  Google Scholar 

  15. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13:493–504.

    Article  PubMed  CAS  Google Scholar 

  16. Reynier P, May-Panloup P, Chretien MF, Morgan CJ, Jean M, Savanger F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001;7:425–9.

    Article  PubMed  CAS  Google Scholar 

  17. van den Berg IM, Eleveld C, van der Hoeven M, Birnie E, Steegers EAP, Galjaard RJ, et al. Defective deacetylation of histone 4 K12 in human oocytes is associated with advanced maternal age and chromosome misalignment. Hum Reprod. 2011;26:1181–90.

    Article  PubMed  Google Scholar 

  18. Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Bio. 2013;14:141–52.

    Article  CAS  Google Scholar 

  19. Hwang WS, Ryu YJ, Park JH, Park ES, Lee EG, Koo JM, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science. 2004;303:1669–74.

    Article  PubMed  CAS  Google Scholar 

  20. Hwang WS, Roh SI, Lee BC, Kang SK, Kwon DK, Kim S, et al. Patient-specific embryonic stem cells derived from human SCNT blastocyst. Science. 2005;308:1777–83.

    Article  PubMed  CAS  Google Scholar 

  21. Stojkovic M. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online. 2005;11:226–31.

    Article  PubMed  Google Scholar 

  22. Hall VJ, Compton D, Stojkovic P, Nesbit M, Herbert M, Murdoch A, et al. Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer. Hum Reprod. 2007;22:52–62.

    Article  PubMed  CAS  Google Scholar 

  23. Heindryckx B, De Sutter P, Gerris J, Dhont M, Van der Elst. Embryo development after successful somatic cell nuclear transfer to in vitro matured human germinal vesicle oocytes. Hum Reprod. 2007;22:1982–90.

    Article  PubMed  CAS  Google Scholar 

  24. Chung Y, Bishop CE, Treff NR, Walker SJ, Sandler VM, Becker S, et al. Reprogramming of human somatic cells using human and animal oocytes. Cloning Stem Cells. 2009;11:213–23.

    Article  PubMed  CAS  Google Scholar 

  25. French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells. 2008;26:485–93.

    Article  PubMed  CAS  Google Scholar 

  26. Modlinski JA. Transfer of embryonic nuclei to fertilized mouse eggs and development of tetraploid blastocysts. Nature. 1978;273:466–7.

    Article  PubMed  CAS  Google Scholar 

  27. Surani MAH, Barton SC, Norris ML. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell. 1986;45:127–36.

    Article  PubMed  CAS  Google Scholar 

  28. Byrne JA, Pedersen DA, Clepper LL, Nelson M, Sanger WG, Gokhale S, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature. 2007;450:497–502.

    Article  PubMed  CAS  Google Scholar 

  29. Fulka Jr J, Mrazek M, Fulka H, Loi P. Mammalian oocyte therapies. Cloning Stem Cells. 2005;7:183–188.26.

    Article  PubMed  CAS  Google Scholar 

  30. Tachibana M, Sparman M, Sritanaudomchai H, Ma H, Clepper L, Woodward J, et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature. 2009;461:367–72.

    Article  PubMed  CAS  Google Scholar 

  31. Craven L, Tuppen H, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, et al. Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature. 2010;465:82–5.

    Article  PubMed  CAS  Google Scholar 

  32. Tachibana M, Amato P, Sparman M, Woodward J, Melguizo Sanchis D, Ma H, et al. Toward germline gene therapy of inherited mitochondrial diseases. Nature. 2013;493:627–31.

    Article  PubMed  CAS  Google Scholar 

  33. Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, et al. Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature. 2013;493:632–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

HF is supported from GACR P302/11/P069. JFJr is supported from GACR 13-03269S. DFA is supported by a grant from the ESHE Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Fulka Jr..

Additional information

Capsule This paper is dedicated to the memory of Keith Campbell (1954–2012), a pioneer in the field of somatic cell nuclear transfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulka, J., Langerova, A., Loi, P. et al. The ups and downs of somatic cell nucleus transfer (SCNT) in humans. J Assist Reprod Genet 30, 1055–1058 (2013). https://doi.org/10.1007/s10815-013-0053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0053-7

Keywords

Navigation