Skip to main content
Log in

Nitric oxide modulates mitochondrial activity and apoptosis through protein S-nitrosylation for preimplantation embryo development

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Previous studies reported that patients with endometriosis had excess nitric oxide (NO) in the reproductive tract and poor embryo development in IVF cycles. This study aims to elucidate the effects of NO on early embryo development.

Methods

Zygotes from superovulated B6CBF1 mice were cultured to blastocysts in a variety of media. Sodium nitroprusside (SNP) and NG-nitro-L-arginine (LNA) were added to the culture medium as a NO donor and a NO synthase inhibitor, respectively. The localization and fluorescence intensity of S-nitrosylated (SNO) proteins within 2-cell stage embryos were analyzed with confocal microscopy. Apoptosis and ATP production in the blastocysts were measured.

Result(s)

Subsequent to NO exposure, the SNO proteins mainly colocalized with the mitochondria and endoplasmic reticulum and the intensity of SNO proteins increased. The addition of a quanylate cyclase inhibitor and a cyclic GMP mimic agent induced nonsignificant changes in SNO proteins, whereas addition of a superoxide scavenger or a reduced form of glutathione rescued the embryos from the effects of NO. However, superoxide scavenger supplementation resulted in decreased blastocyst ATP production.

Conclusion(s)

Elevated NO exerts deleterious effects on embryo development, possibly through protein S-nitrosylation in the mitochondria and endoplasmic reticulum. Including glutathione as a component in the culture medium might counteract this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beltran B, Orsi A, Clementi E, Moncada S. Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol. 2000;129:953–60.

    Article  PubMed  CAS  Google Scholar 

  2. Benhar M, Stamler JS. A central role for S-nitrosylation in apoptosis. Nat Cell Biol. 2005;7:645–6.

    Article  PubMed  CAS  Google Scholar 

  3. Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224:213–32.

    Article  PubMed  CAS  Google Scholar 

  4. Bustamante J, Bersier G, Badin RA, Cymeryng C, Parodi A, Boveris A. Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis. Nitric Oxide. 2002;6:333–41.

    Article  PubMed  CAS  Google Scholar 

  5. Chen HW, Jiang WS, Tzeng CR. Nitric oxide as a regulator in preimplantation embryo development and apoptosis. Fertil Steril. 2001;75:1163–71.

    Article  PubMed  CAS  Google Scholar 

  6. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun. 2001;282:1075–9.

    Article  PubMed  CAS  Google Scholar 

  7. Chwalisz K, Garfield RE. Role of nitric oxide in implantation and menstruation. Hum Reprod. 2000;15 Suppl 3:96–111.

    Article  PubMed  CAS  Google Scholar 

  8. Cipollone R, Ascenzi P, Tomao P, Imperi F, Visca P. Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese. J Mol Microbiol Biotechnol. 2008;15:199–211.

    Article  PubMed  CAS  Google Scholar 

  9. Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M, Carroll J. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development. 2004;131:3057–67.

    Article  PubMed  CAS  Google Scholar 

  10. Faulkner KM, Liochev SI, Fridovich I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J Biol Chem. 1994;269:23471–6.

    PubMed  CAS  Google Scholar 

  11. Garrido N, Navarro J, Garcia-Velasco J, Remoh J, Pellice A, Simon C. The endometrium versus embryonic quality in endometriosis-related infertility. Hum Reprod Update. 2002;8:95–103.

    Article  PubMed  CAS  Google Scholar 

  12. Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–36.

    Article  PubMed  CAS  Google Scholar 

  13. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7:175–89.

    Article  PubMed  CAS  Google Scholar 

  14. Hefler LA, Gregg AR. Inducible and endothelial nitric oxide synthase: genetic background affects ovulation in mice. Fertil Steril. 2002;77:147–51.

    Article  PubMed  Google Scholar 

  15. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6:150–66.

    Article  PubMed  CAS  Google Scholar 

  16. Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84:130–40.

    Article  PubMed  Google Scholar 

  17. Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE. 2001;2001:l1.

    Article  Google Scholar 

  18. Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998;145:81–8.

    Article  PubMed  CAS  Google Scholar 

  19. Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008;45:1–17.

    Article  PubMed  CAS  Google Scholar 

  20. Kim H, Ku SY, Kim SH, Lee GH, Choi YM, Kim JM, et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism is associated with advanced stage endometriosis. Hum Reprod. 2009;24:2656–9.

    Article  PubMed  CAS  Google Scholar 

  21. Kuo RC, Baxter GT, Thompson SH, Stricker SA, Patton C, Bonaventura J, et al. NO is necessary and sufficient for egg activation at fertilization. Nature. 2000;406:633–6.

    Article  PubMed  CAS  Google Scholar 

  22. Lee TH, Wu MY, Chen MJ, Chao KH, Ho HN, Yang YS. Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil Steril. 2004;82:126–31.

    Article  PubMed  CAS  Google Scholar 

  23. Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod. 2000;62:1745–53.

    Article  PubMed  CAS  Google Scholar 

  24. Luo Q, Chen XJ, Ding GL, Dong MY, Huang HF. Downregulative effects of nitric oxide on oocyte fertilization and embryo development: possible roles of nitric oxide in the pathogenesis of endometriosis-associated infertility. Cell Physiol Biochem. 2010;26:1023–8.

    Article  PubMed  CAS  Google Scholar 

  25. McDowall DG, Keaney NP, Turner JM, Lane JR, Okuda Y. The toxicity of sodium nitroprusside. Br J Anaesth. 1974;46:327–32.

    Article  PubMed  CAS  Google Scholar 

  26. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 2002;3:214–20.

    Article  PubMed  CAS  Google Scholar 

  27. Nishikimi A, Matsukawa T, Hoshino K, Ikeda S, Kira Y, Sato EF, et al. Localization of nitric oxide synthase activity in unfertilized oocytes and fertilized embryos during preimplantation development in mice. Reproduction. 2001;122:957–63.

    Article  PubMed  CAS  Google Scholar 

  28. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003;299:896–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ota H, Igarashi S, Kato N, Tanaka T. Aberrant expression of glutathione peroxidase in eutopic and ectopic endometrium in endometriosis and adenomyosis. Fertil Steril. 2000;74:313–8.

    Article  PubMed  CAS  Google Scholar 

  30. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  PubMed  CAS  Google Scholar 

  31. Quinn P. Enhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphate. J Assist Reprod Genet. 1995;12:97–105.

    Article  PubMed  CAS  Google Scholar 

  32. Seya K, Motomura S, Furukawa K. Cardiac mitochondrial cGMP stimulates cytochrome c release. Clin Sci (Lond). 2007;112:113–21.

    Article  CAS  Google Scholar 

  33. Shiva S, Brookes PS, Patel RP, Anderson PG, Darley-Usmar VM. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci U S A. 2001;98:7212–7.

    Article  PubMed  CAS  Google Scholar 

  34. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994;78:931–6.

    Article  PubMed  CAS  Google Scholar 

  35. Takuma K, Phuagphong P, Lee E, Mori K, Baba A, Matsuda T. Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem. 2001;276:48093–9.

    PubMed  CAS  Google Scholar 

  36. Tempfer CB, Simoni M, Destenaves B, Fauser BC. Functional genetic polymorphisms and female reproductive disorders: part II–endometriosis. Hum Reprod Update. 2009;15:97–118.

    Article  PubMed  CAS  Google Scholar 

  37. Tranguch S, Steuerwald N, Huet-Hudson YM. Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development. Biol Reprod. 2003;68:1538–44.

    Article  PubMed  CAS  Google Scholar 

  38. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62:1866–74.

    Article  PubMed  CAS  Google Scholar 

  39. Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10:415–24.

    PubMed  CAS  Google Scholar 

  40. Van Blerkom J, Davis P, Mathwig V, Alexander S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod. 2002;17:393–406.

    Article  PubMed  Google Scholar 

  41. Wu MY, Chao KH, Yang JH, Lee TH, Yang YS, Ho HN. Nitric oxide synthesis is increased in the endometrial tissue of women with endometriosis. Hum Reprod. 2003;18:2668–71.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang Y, Hogg N. S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med. 2005;38:831–8.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang J, Jin B, Li L, Block ER, Patel JM. Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am J Physiol Cell Physiol. 2005;288:C840–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mei-Chun Liu of the Instrument Center of Taichung Veterans General Hospital for assistance with confocal microscopy imaging and analysis. Our research grants include NSC 95-2314-B-039-031 (MS Lee) and NSC 98-2314-B-040-012 (TH Lee) from the National Science Council, Taiwan.

Authorship

TH Lee, MS Lee, and YS Yang contributed to conception and design. CC Huang, HM Taso, PM Lin did acquisition of data, analysis and interpretation of data. TH Lee and MS Lee drafted the article. JY Shew, HN Ho and Yang YS revised the article critically for important intellectual content. JY Shew and YS Yang approved the final version of manuscript.

Conflict of interest

All the authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Shih Yang.

Additional information

Capsule

Excessive environmental nitric oxide is detrimental to embryo development through protein S-nitrosylation in the mitochondria and endoplasmic reticulum. Glutathione supplementation could counteract such effect.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TH., Lee, MS., Huang, CC. et al. Nitric oxide modulates mitochondrial activity and apoptosis through protein S-nitrosylation for preimplantation embryo development. J Assist Reprod Genet 30, 1063–1072 (2013). https://doi.org/10.1007/s10815-013-0045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0045-7

Keywords

Navigation