Skip to main content
Log in

Oocyte cryopreservation: searching for novel improvement strategies

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To highlight emerging techniques aimed at improving oocyte cryopreservation.

Methods

Review of available and relevant literature through Pubmed and Medline searches.

Results

Oocyte cryopreservation is an increasingly common procedure utilized for assisted reproduction and may benefit several patient populations. Therefore, improving efficiency is paramount in realizing the tremendous promise of this approach. However, in addition to numerous studies looking to improve oocyte cryopreservation efficacy via examination of variables involved with protocol methodology, such as type/concentration of cryoprotectant (CPA), type of storage device, or cooling/warming rates, there are more novel approaches for improvement. These alternate approaches include utilizing different the stages of oocytes, examining alteration of basal media and buffer composition, optimizing CPA exchange protocols and device loading through use of automated technology, as well as examination/manipulation of oocyte cellular composition to improve cryotolerance. Finally, elucidating more accurate or insightful indicators of “success” is crucial for continued improvement of oocyte cryopreservation.

Conclusion

Oocyte cryopreservation has improved dramatically in recent years and is receiving widespread clinical use. Novel approaches to further improve success, as well as improved methods to assess this success will aid in continued improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abe H, Yamashita S, Satoh T, Hoshi H. Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev. 2002;61:57–66.

    Article  PubMed  CAS  Google Scholar 

  2. Al-Khtib M, Perret A, Khoueiry R, et al. Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro. Fertil Steril. 2011;95:1955–60.

    Article  PubMed  CAS  Google Scholar 

  3. Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 1987;24:324–31.

    Article  PubMed  CAS  Google Scholar 

  4. Arav A, Pearl M, Zeron Y. Does membrane lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? Cryo-lett. 2000;21:179–86.

    CAS  Google Scholar 

  5. Arav A, Zeron Y, Leslie SB, et al. Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology. 1996;33:589–99.

    Article  PubMed  CAS  Google Scholar 

  6. Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update. 2010;16:166–76.

    Article  PubMed  CAS  Google Scholar 

  7. Barceló-Fimbres M, Seidel GE. Effects of either glucose or fructose and metabolic regulators on bovine embryo development and lipid accumulation in vitro. Mol Reprod Dev. 2007;74:1406–18.

    Article  PubMed  Google Scholar 

  8. Berthelot-Ricou A, Perrin J, Di Giorgio C, et al. Assessment of 1,2-propanediol (PrOH) genotoxicity on mouse oocytes by comet assay. Fertil Steril. 2011;96:1002–7.

    Article  PubMed  CAS  Google Scholar 

  9. Boldt J. Current results with slow freezing and vitrification of the human oocyte. Reprod Biomed Online. 2011;23:314–22.

    Article  PubMed  CAS  Google Scholar 

  10. Borini A, Bianchi V, Bonu MA, et al. Evidence-based clinical outcome of oocyte slow cooling. Reprod Biomed Online. 2007;15:175–81.

    Article  PubMed  CAS  Google Scholar 

  11. Borini A, Coticchio G. The efficacy and safety of human oocyte cryopreservation by slow cooling. Semin Reprod Med. 2009;27:443–9.

    Article  PubMed  CAS  Google Scholar 

  12. Borini A, Gambardella A, Bonu MA, et al. Comparison of IVF and ICSI when only few oocytes are available for insemination. Reprod Biomed Online. 2009;19:270–5.

    Article  PubMed  Google Scholar 

  13. Brinster RL. Lactate dehydrogenase activity in the preimplanted mouse embryo. Biochim Biophys Acta. 1965;110:439–41.

    Article  PubMed  CAS  Google Scholar 

  14. Brown KI, Graham EF, Crabo BG. Effect of some hydrogen ion buffers on storage and freezing of turkey spermatozoa. Poultry Sci. 1972;51:840–9.

    Article  CAS  Google Scholar 

  15. Cao Y, Xing Q, Zhang Z-G, et al. Cryopreservation of immature and in-vitro matured human oocytes by vitrification. Reprod Biomed Online. 2009;19:369–73.

    Article  PubMed  Google Scholar 

  16. Checura CM, Seidel GE. Effect of macromolecules in solutions for vitrification of mature bovine oocytes. Theriogenology. 2007;67:919–30.

    Article  PubMed  CAS  Google Scholar 

  17. Chian R-C, Quinn P (2010) Fertility Cryopreservation.

  18. Chung HM, Hong SW, Lim JM, et al. In vitro blastocyst formation of human oocytes obtained from unstimulated and stimulated cycles after vitrification at various maturational stages. Fertil Steril. 2000;73:545–51.

    Article  PubMed  CAS  Google Scholar 

  19. Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2011;96:277–85.

    Article  PubMed  Google Scholar 

  20. Coticchio G, Borini A, Distratis V, et al. Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. J Assist Reprod Gen. 2010;27:131–40.

    Article  Google Scholar 

  21. Crabo BG, Brown KI, Graham EF. Effect of some buffers on storage and freezing of boar spermatozoa. J Anim Sci. 1972;35:377–82.

    PubMed  CAS  Google Scholar 

  22. Dib LA, de Araújo MCPM, Giorgenon RC, et al. Apparently matured oocytes injected in telophase I have worse outcomes from assisted reproduction. Rev Bras Ginecol Obstetrícia: Rev Federação Bras Sociedades Ginecol Obstetrícia. 2012;34:203–8.

    Article  Google Scholar 

  23. Dumoulin JC, Bergers-Janssen JM, Pieters MH, et al. The protective effects of polymers in the cryopreservation of human and mouse zonae pellucidae and embryos. Fertil Steril. 1994;62:793–8.

    PubMed  CAS  Google Scholar 

  24. El-Danasouri I, Selman H, Strehler E. Comparison of MOPS and HEPES buffers during vitrification of human embryos. Hum Reprod. 2004;14:i136.

    Google Scholar 

  25. Eroglu A, Bailey SE, Toner M, Toth TL. Successful cryopreservation of mouse oocytes by using low concentrations of trehalose and dimethylsulfoxide. Biol Reprod. 2009;80:70–8.

    Article  PubMed  CAS  Google Scholar 

  26. Fahy GM. Vitrification: a new approach to organ cryopreservation. Prog Clin Biol Res. 1986;224:305–35.

    PubMed  CAS  Google Scholar 

  27. Fahy GM, Lilley TH, Linsdell H, et al. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology. 1990;27:247–68.

    Article  PubMed  CAS  Google Scholar 

  28. Fasano G, Demeestere I, Englert Y. In-vitro maturation of human oocytes: before or after vitrification? J Asst Repod Gen. 2012;29:507–12.

    Article  Google Scholar 

  29. Fitzharris G, Baltz JM. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development (Cambridge, England). 2006;133(4):591–9.

    Google Scholar 

  30. FitzHarris G, Siyanov V, Baltz JM. Granulosa cells regulate oocyte intracellular pH against acidosis in preantral follicles by multiple mechanisms. Development (Cambridge, England). 2007;134:4283–95.

    Article  CAS  Google Scholar 

  31. Fu X-W, Shi W-Q, Zhang Q-J, et al. Positive effects of Taxol pretreatment on morphology, distribution and ultrastructure of mitochondria and lipid droplets in vitrification of in vitro matured porcine oocytes. Anim Reprod Sci. 2009;115:158–68.

    Article  PubMed  CAS  Google Scholar 

  32. Fuchinoue K, Fukunaga N, Chiba S, et al. Freezing of human immature oocytes using cryoloops with Taxol in the vitrification solution. J Asst Reprod Gen. 2004;21:307–9.

    Article  Google Scholar 

  33. Garcia MA, Graham EF. Development of a buffer system for dialysis of bovine spermatozoa before freezing. I. Effect of zwitterion buffers. Theriogenology. 1989;31:1021–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gardner DK, Sheehan CB, Rienzi L, et al. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology. 2007;67:64–72.

    Article  PubMed  CAS  Google Scholar 

  35. Ghetler Y, Skutelsky E, Ben Nun I, et al. Human oocyte cryopreservation and the fate of cortical granules. Fertil Steril. 2006;86:210–6.

    Article  PubMed  Google Scholar 

  36. Gomes C, Merlini M, Konheim J, et al. Oocyte meiotic-stage-specific differences in spindle depolymerization in response to temperature changes monitored with polarized field microscopy and immunocytochemistry. Fertil Steril. 2012;97:714–9.

    Article  PubMed  Google Scholar 

  37. Gomes CM, Silva CA, Acevedo N, et al. Influence of vitrification on mouse metaphase II oocyte spindle dynamics and chromatin alignment. Fertil Steril. 2008;90:1396–404.

    Article  PubMed  Google Scholar 

  38. Gook DA, Osborn SM, Johnston WI. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod. 1993;8:1101–9.

    PubMed  CAS  Google Scholar 

  39. Graham EF, Crabo BG, Brown KI. Effect of some zwitter ion buffers on the freezing and storage of spermatozoa. I. Bull J Dairy Sci. 1972;55:372–8.

    Article  CAS  Google Scholar 

  40. Gualtieri R, Iaccarino M, Mollo V, et al. Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil Steril. 2009;91:1023–34.

    Article  PubMed  Google Scholar 

  41. Heo YS, Lee H-J, Hassell BA, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip. 2011;11:3530–7.

    Article  PubMed  CAS  Google Scholar 

  42. Horvath G, Seidel Jr GE. Use of fetuin before and during vitrification of bovine oocytes. Reprod Domest Anim. 2008;43:333–8.

    Article  PubMed  CAS  Google Scholar 

  43. Horvath G, Seidel GE. Vitrification of bovine oocytes after treatment with cholesterol-loaded methyl-beta-cyclodextrin. Theriogenology. 2006;66:1026–33.

    Article  PubMed  CAS  Google Scholar 

  44. Hu W, Marchesi D, Qiao J, Feng HL. Effect of slow freeze versus vitrification on the oocyte: an animal model. Fertil Steril. 2012;98:752–760.e3.

    Article  PubMed  Google Scholar 

  45. Hyun C-S, Cha J-H, Son W-Y, et al. Optimal ICSI timing after the first polar body extrusion in in vitro matured human oocytes. Hum Reprod. 2007;22:1991–5.

    Article  PubMed  Google Scholar 

  46. Jasensky J, Boughton A, Khmaladze A, et al. Title/Author Year Live-cell intra-oocyte lipid analysis and quantification with hyperspectral imaging by multiplex coherent anti-stockes Raman scattering microscopy (CARS-M). Fertil Steril. 2012;98:S79.

    Article  Google Scholar 

  47. Jeyendran RS, Graham EF. An evaluation of cryoprotective compounds on bovine spermatozoa. Cryobiology. 1980;17:458–64.

    Article  PubMed  CAS  Google Scholar 

  48. Jones A, Van Blerkom J, Davis P, Toledo AA. Cryopreservation of metaphase II human oocytes effects mitochondrial membrane potential: implications for developmental competence. Hum Reprod. 2004;19:1861–6.

    Article  PubMed  Google Scholar 

  49. Karran G, Legge M. Non-enzymatic formation of formaldehyde in mouse oocyte freezing mixtures. Hum Reprod. 1996;11:2681–6.

    Article  PubMed  CAS  Google Scholar 

  50. Keefe D, Liu L, Wang W, Silva C. Imaging meiotic spindles by polarization light microscopy: principles and applications to IVF. Reprod Biomed Online. 2003;7:24–9.

    Article  PubMed  Google Scholar 

  51. Kuwayama M, Fujikawa S, Nagai T. Ultrastructure of IVM-IVF bovine blastocysts vitrified after equilibration in glycerol 1,2-propanediol using 2-step and 16-step procedures. Cryobiology. 1994;31:415–22.

    Article  PubMed  CAS  Google Scholar 

  52. Lane M, Gardner DK. Vitrification of mouse oocytes using a nylon loop. Mol Reprod Dev. 2001;58:342–7.

    Article  PubMed  CAS  Google Scholar 

  53. Lane M, Lyons EA, Bavister BD. Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Hum Reprod. 2000;15:389–94.

    Article  PubMed  CAS  Google Scholar 

  54. Lane M, Maybach JM, Hooper K, et al. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol Reprod Dev. 2003;64:70–8.

    Article  PubMed  Google Scholar 

  55. Larman MG, Katz-Jaffe MG, Sheehan CB, Gardner DK. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod. 2007;22:250–9.

    Article  PubMed  CAS  Google Scholar 

  56. Larman MG, Minasi MG, Rienzi L, Gardner DK. Maintenance of the meiotic spindle during vitrification in human and mouse oocytes. Reprod Biomed Online. 2007;15:692–700.

    Article  PubMed  CAS  Google Scholar 

  57. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction. 2006;131:53–61.

    Article  PubMed  CAS  Google Scholar 

  58. Leibo SP, Pool TB. The principal variables of cryopreservation: solutions, temperatures, and rate changes. Fertil Steril. 2011;96:269–76.

    Article  PubMed  CAS  Google Scholar 

  59. Matson PL, Graefling J, Junk SM, et al. Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in-vitro fertilization programme. Hum Reprod. 1997;12:1550–3.

    Article  PubMed  CAS  Google Scholar 

  60. Men H, Monson RL, Parrish JJ, Rutledge JJ. Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology. 2003;47:73–81.

    Article  PubMed  CAS  Google Scholar 

  61. Meng Q, Wu X, Bunch TD, et al. Enucleation of demecolcine-treated bovine oocytes in cytochalasin-free medium: mechanism investigation and practical improvement. Cell Reprogram. 2011;13:411–8.

    PubMed  CAS  Google Scholar 

  62. Morató R, Izquierdo D, Albarracín JL, et al. Effects of pre-treating in vitro-matured bovine oocytes with the cytoskeleton stabilizing agent taxol prior to vitrification. Mol Reprod Dev. 2008;75:191–201.

    Article  PubMed  Google Scholar 

  63. Morató R, Mogas T, Maddox-Hyttel P. Ultrastructure of bovine oocytes exposed to Taxol prior to OPS vitrification. Mol Reprod Dev. 2008;75:1318–26.

    Article  PubMed  Google Scholar 

  64. Nottola SA, Coticchio G, De Santis L, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reprod Biomed Online. 2008;17:368–77.

    Article  PubMed  CAS  Google Scholar 

  65. Nottola SA, Coticchio G, Sciajno R, et al. Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online. 2009;19 Suppl 3:17–27.

    Article  PubMed  Google Scholar 

  66. Nottola SA, Macchiarelli G, Coticchio G, et al. Ultrastructure of human mature oocytes after slow cooling cryopreservation using different sucrose concentrations. Hum Reprod. 2007;22:1123–33.

    Article  PubMed  CAS  Google Scholar 

  67. Park K-E, Kwon I-K, Han M-S, Niwa K. Effects of partial removal of cytoplasmic lipid on survival of vitrified germinal vesicle stage pig oocytes. J Repro Dev. 2005;51:151–60.

    Article  CAS  Google Scholar 

  68. Parmegiani L, Bertocci F, Garello C, et al. Efficiency of human oocyte slow freezing: results from five assisted reproduction centres. Repro Biomed Online. 2009;18:352–9.

    Article  CAS  Google Scholar 

  69. Porcu E, Fabbri R, Seracchioli R, et al. Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril. 1997;68:724–6.

    Article  PubMed  CAS  Google Scholar 

  70. Regula CS, Pfeiffer JR, Berlin RD. Microtubule assembly and disassembly at alkaline pH. J Cell Biol. 1981;89:45–53.

    Article  PubMed  CAS  Google Scholar 

  71. Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, et al. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68:236–43.

    Article  PubMed  CAS  Google Scholar 

  72. Röcken C, Ebert MPA, Roessner A. Proteomics in pathology, research and practice. Pathol Res Pract. 2004;200:69–82.

    Article  PubMed  Google Scholar 

  73. Ruffing NA, Steponkus PL, Pitt RE, Parks JE. Osmometric behaavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology. 1993;30:562–80.

    Article  PubMed  CAS  Google Scholar 

  74. Saragusty J, Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction. 2011;141:1–19.

    Article  PubMed  CAS  Google Scholar 

  75. Sauvat F, Capito C, Sarnacki S, et al. Immature cryopreserved ovary restores puberty and fertility in mice without alteration of epigenetic marks. PLoS One. 2008;3:e1972.

    Article  PubMed  Google Scholar 

  76. Seidel GE. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology. 2006;65:228–35.

    Article  PubMed  CAS  Google Scholar 

  77. Shau H, Chandler GS, Whitelegge JP, et al. Proteomic profiling of cancer biomarkers. Brief Funct Genomic Proteomic. 2003;2:147–58.

    Article  PubMed  CAS  Google Scholar 

  78. Shehab-El-Deen MA, Leroy JLMR, Maes D, Van Soom A. Cryotolerance of bovine blastocysts is affected by oocyte maturation in media containing palmitic or stearic acid. Reprod Domest Anim. 2009;44:140–2.

    Article  PubMed  CAS  Google Scholar 

  79. Shi W-Q, Zhu S-E, Zhang D, et al. Improved development by Taxol pretreatment after vitrification of in vitro matured porcine oocytes. Reproduction. 2006;131:795–804.

    Article  PubMed  CAS  Google Scholar 

  80. Sieracki NA, Hwang HJ, Lee MK, et al. (2008) A temperature independent pH (TIP) buffer for biomedical biophysical applications at low temperatures. Chem Commun 823–825.

  81. Smith GD, Motta EE, Serafini P. Theoretical and experimental basis of oocyte vitrification. Reprod Biomed Online. 2011;23:298–306.

    Article  PubMed  CAS  Google Scholar 

  82. Smith GD, Serafini PC, Fioravanti J, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94:2088–95.

    Article  PubMed  Google Scholar 

  83. Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001;64:1845–54.

    Article  PubMed  CAS  Google Scholar 

  84. Stachecki JJ, Cohen J, Willadsen S. Detrimental effects of sodium during mouse oocyte cryopreservation. Biol Reprod. 1998;59:395–400.

    Article  PubMed  CAS  Google Scholar 

  85. Stachecki JJ, Cohen J, Willadsen SM. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology. 1998;37:346–54.

    Article  PubMed  CAS  Google Scholar 

  86. Sun X-F, Zhang W-H, Chen X-J, et al. Spindle dynamics in living mouse oocytes during meiotic maturation, ageing, cooling and overheating: a study by polarized light microscopy. Zygote. 2004;12:241–9.

    Article  PubMed  Google Scholar 

  87. Suo L, Zhou G-B, Meng Q-G, et al. OPS vitrification of mouse immature oocytes before or after meiosis: the effect on cumulus cells maintenance and subsequent development. Zygote. 2009;17:71–7.

    Article  PubMed  CAS  Google Scholar 

  88. Swain JE, Smith GD. Cryoprotectants. In: Cihian RC, Quinn P, editors. Fertility cryopreservation. Cambrige: Cambridge University Press; 2010. p. 24–39.

    Chapter  Google Scholar 

  89. Toth TL, Baka SG, Veeck LL, et al. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil Steril. 1994;61:891–4.

    PubMed  CAS  Google Scholar 

  90. Toth TL, Lanzendorf SE, Sandow BA, et al. Cryopreservation of human prophase I oocytes collected from unstimulated follicles. Fertil Steril. 1994;61:1077–82.

    PubMed  CAS  Google Scholar 

  91. Trapphoff T, El Hajj N, Zechner U, et al. DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod. 2010;25:3025–42.

    Article  PubMed  CAS  Google Scholar 

  92. Tucker M, Wright G, Morton P, et al. Preliminary experience with human oocyte cryopreservation using 1,2-propanediol and sucrose. Hum Reprod. 1996;11:1513–5.

    Article  PubMed  CAS  Google Scholar 

  93. Tucker MJ, Wright G, Morton PC, Massey JB. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation. Fertil Steril. 1998;70:578–9.

    Article  PubMed  CAS  Google Scholar 

  94. Vincent C, Cheek TR, Johnson MH. Cell cycle progression of parthenogenetically activated mouse oocytes to interphase is dependent on the level of internal calcium. J Cell Sci. 1992;103:389–96.

    PubMed  CAS  Google Scholar 

  95. Wang WH, Meng L, Hackett RJ, et al. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril. 2001;75:348–53.

    Article  PubMed  CAS  Google Scholar 

  96. Will MA, Clark NA, Swain JE. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Gen. 2011;28:711–24.

    Article  Google Scholar 

  97. Yamaji Y, Seki S, Matsukawa K, et al. Developmental ability of vitrified mouse oocytes expressing water channels. J Reprod Dev. 2011;57:403–8.

    Article  PubMed  CAS  Google Scholar 

  98. Zander-Fox D, Cashman KS, Lane M. The presence of 1 mM glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development. J Assist Reprod Gen. 2013;30:107–16.

    Article  Google Scholar 

  99. Zander-Fox DL, Mitchell M, Thompson JG, Lane M. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod Biomed Online. 2010;21:219–29.

    Article  PubMed  Google Scholar 

  100. Zeron Y, Pearl M, Borochov A, Arav A. Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes. Cryobiology. 1999;38:35–42.

    Article  PubMed  CAS  Google Scholar 

  101. Zeron Y, Tomczak M, Crowe J, Arav A. The effect of liposomes on thermotropic membrane phase transitions of bovine spermatozoa and oocytes: implications for reducing chilling sensitivity. Cryobiology. 2002;45:143–52.

    Article  PubMed  CAS  Google Scholar 

  102. Zhou C, Baltz JM. JAK2 mediates the acute response to decreased cell volume in mouse preimplantation embryos by activating NHE1. J Cell Physiol. 2013;228:428–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Swain.

Additional information

Capsule Novel strategies to improve oocyte cryopreservation may permit greater efficacy and increased application.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, N.A., Swain, J.E. Oocyte cryopreservation: searching for novel improvement strategies. J Assist Reprod Genet 30, 865–875 (2013). https://doi.org/10.1007/s10815-013-0028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0028-8

Keywords

Navigation