Journal of Assisted Reproduction and Genetics

, Volume 30, Issue 9, pp 1231–1238 | Cite as

A proteomic analysis of human follicular fluid: comparison between fertilized oocytes and non-fertilized oocytes in the same patient

  • Bayasula
  • Akira Iwase
  • Hiroharu Kobayashi
  • Maki Goto
  • Tatsuo Nakahara
  • Tomoko Nakamura
  • Mika Kondo
  • Yoshinari Nagatomo
  • Tomomi Kotani
  • Fumitaka Kikkawa
Technological Innovations



Human follicular fluid constitutes the microenvironment of follicles and includes various biological active proteins that can affect follicle growth and oocyte fertilization. Conducting proteomic evaluations of human follicular fluid may be helpful for identifying potential biomarkers possibly possessing a predictive value for oocyte quality and the success of in vitro fertilization.


We performed proteomic profiling of human follicular fluids containing oocytes that were fertilized and resulted in pregnancy and follicular fluids containing oocytes that were not fertilized in the same patients undergoing intracytoplasmic sperm injection using the LTQ Orbitrap coupled with liquid chromatography-tandem mass spectrometry (LC/MS/MS) analyses.


We identified a total of 503 proteins in human follicular fluids containing fertilized and non-fertilized oocytes obtained from 12 patients. We also found that 53 proteins exhibited significantly different spectral counts between the two groups, including heparan sulfate proteoglycan perlecan, which showed significant upregulation in the follicular fluids containing fertilized oocytes in comparison with that observed in the follicular fluids containing non-fertilized oocytes.


Our results suggest a possibility that proteins identified by LC/MS/MS in follicular fluid might not only be involved in folliculogenesis, but also function as biomarkers possessing predictive potential for oocyte maturation and the success of IVF when their expression levels are significantly different between fertilized and non-fertilized oocytes, although no distinctive biomarkers were identified in the current study.


Follicular fluid Heparan sulfate proteoglycan perlecan IVF LC/MS/MS Proteomic analysis 



This study was supported by Yamaguchi Endocrine Research Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10815_2013_4_MOESM1_ESM.doc (418 kb)
Supplemental Table 1 (DOC 417 kb)


  1. 1.
    Angelucci S, Ciavardelli D, Di Giuseppe F, Eleuterio E, Sulpizio M, Tiboni GM, et al. Proteome analysis of human follicular fluid. Biochim Biophys Acta. 2006;1764(11):1775–85. doi: 10.1016/j.bbapap.2006.09.001.PubMedCrossRefGoogle Scholar
  2. 2.
    Angervo M, Koistinen R, Seppala M. Epidermal growth factor stimulates production of insulin-like growth factor-binding protein-1 in human granulosa-luteal cells. J Endocrinol. 1992;134(1):127–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Atiomo W, Khalid S, Parameshweran S, Houda M, Layfield R. Proteomic biomarkers for the diagnosis and risk stratification of polycystic ovary syndrome: a systematic review. BJOG. 2009;116(2):137–43. doi: 10.1111/j.1471-0528.2008.02041.x.PubMedCrossRefGoogle Scholar
  4. 4.
    Boxmeer JC, Macklon NS, Lindemans J, Beckers NG, Eijkemans MJ, Laven JS, et al. IVF outcomes are associated with biomarkers of the homocysteine pathway in monofollicular fluid. Hum Reprod. 2009;24(5):1059–66. doi: 10.1093/humrep/dep009.PubMedCrossRefGoogle Scholar
  5. 5.
    Buhimschi IA, Zambrano E, Pettker CM, Bahtiyar MO, Paidas M, Rosenberg VA, et al. Using proteomic analysis of the human amniotic fluid to identify histologic chorioamnionitis. Obstet Gynecol. 2008;111(2 Pt 1):403–12. doi: 10.1097/AOG.0b013e31816102aa.PubMedCrossRefGoogle Scholar
  6. 6.
    Chegini N, Williams RS. Immunocytochemical localization of transforming growth factors (TGFs) TGF-alpha and TGF-beta in human ovarian tissues. J Clin Endocrinol Metab. 1992;74(5):973–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Cho CK, Smith CR, Diamandis EP. Amniotic fluid proteome analysis from Down syndrome pregnancies for biomarker discovery. J Proteome Res. 2010;9(7):3574–82. doi: 10.1021/pr100088k.PubMedCrossRefGoogle Scholar
  8. 8.
    de Agostini A. An unexpected role for anticoagulant heparan sulfate proteoglycans in reproduction. Swiss Med Wkly. 2006;136(37–38):583–90.PubMedGoogle Scholar
  9. 9.
    Dieplinger H, Ankerst DP, Burges A, Lenhard M, Lingenhel A, Fineder L, et al. Afamin and apolipoprotein A-IV: novel protein markers for ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1127–33. doi: 10.1158/1055-9965.EPI-08-0653.PubMedCrossRefGoogle Scholar
  10. 10.
    Dulay AT, Buhimschi CS, Zhao G, Oliver EA, Mbele A, Jing S, et al. Soluble TLR2 is present in human amniotic fluid and modulates the intraamniotic inflammatory response to infection. J Immunol. 2009;182(11):7244–53. doi: 10.4049/jimmunol.0803517.PubMedCrossRefGoogle Scholar
  11. 11.
    Estes SJ, Ye B, Qiu W, Cramer D, Hornstein MD, Missmer SA. A proteomic analysis of IVF follicular fluid in women <or=32 years old. Fertil Steril. 2009;92(5):1569–78. doi: 10.1016/j.fertnstert.2008.08.120.PubMedCrossRefGoogle Scholar
  12. 12.
    Farach-Carson MC, Carson DD. Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology. 2007;17(9):897–905. doi: 10.1093/glycob/cwm043.PubMedCrossRefGoogle Scholar
  13. 13.
    Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Gebhardt KM, Feil DK, Dunning KR, Lane M, Russell DL. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertil Steril. 2011;96(1):47–52 e42. doi: 10.1016/j.fertnstert.2011.04.033.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamel M, Dufort I, Robert C, Leveille MC, Leader A, Sirard MA. Identification of follicular marker genes as pregnancy predictors for human IVF: new evidence for the involvement of luteinization process. Mol Hum Reprod. 2010;16(8):548–56. doi: 10.1093/molehr/gaq051.PubMedCrossRefGoogle Scholar
  16. 16.
    Hanrieder J, Nyakas A, Naessen T, Bergquist J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J Proteome Res. 2008;7(1):443–9. doi: 10.1021/pr070277z.PubMedCrossRefGoogle Scholar
  17. 17.
    Hillier SG. Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod. 1994;9(2):188–91.PubMedGoogle Scholar
  18. 18.
    Jarkovska K, Martinkova J, Liskova L, Halada P, Moos J, Rezabek K, et al. Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization. J Proteome Res. 2010;9(3):1289–301. doi: 10.1021/pr900802u.PubMedCrossRefGoogle Scholar
  19. 19.
    Jiao X, Billings PC, O’Connell MP, Kaplan FS, Shore EM, Glaser DL. Heparan sulfate proteoglycans (HSPGs) modulate BMP2 osteogenic bioactivity in C2C12 cells. J Biol Chem. 2007;282(2):1080–6. doi: 10.1074/jbc.M513414200.PubMedCrossRefGoogle Scholar
  20. 20.
    Krizan J, Cuchalova L, Sima P, Kralickova M, Madar J, Vetvicka V. Altered distribution of NK and NKT cells in follicular fluid is associated with IVF outcome. J Reprod Immunol. 2009;82(1):84–8. doi: 10.1016/j.jri.2009.05.005.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee HC, Lee SW, Lee KW, Cha KY, Kim KH, Lee S. Identification of new proteins in follicular fluid from mature human follicles by direct sample rehydration method of two-dimensional polyacrylamide gel electrophoresis. J Korean Med Sci. 2005;20(3):456–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Lu M, Whelan SA, He J, Saxton RE, Faull KF, Whitelegge JP, et al. Hydrophobic proteome analysis of triple negative and hormone-receptor-positive-Her2-negative breast cancer by mass spectrometer. Clin Proteomics. 2010;6(3):93–103. doi: 10.1007/s12014-010-9052-1.PubMedCrossRefGoogle Scholar
  23. 23.
    Preissner KT, Seiffert D. Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res. 1998;89(1):1–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Spitzer D, Murach KF, Lottspeich F, Staudach A, Illmensee K. Different protein patterns derived from follicular fluid of mature and immature human follicles. Hum Reprod. 1996;11(4):798–807.PubMedCrossRefGoogle Scholar
  25. 25.
    Takikawa S, Iwase A, Goto M, Harata T, Umezu T, Nakahara T, et al. Assessment of the predictive value of follicular fluid insulin, leptin and adiponectin in assisted reproductive cycles. Gynecol Endocrinol. 2010;26(7):494–9. doi: 10.3109/09513591003632050.PubMedCrossRefGoogle Scholar
  26. 26.
    Twigt J, Steegers-Theunissen RP, Bezstarosti K, Demmers JA. Proteomic analysis of the microenvironment of developing oocytes. Proteomics. 2012;12(9):1463–71. doi: 10.1002/pmic.201100240.PubMedCrossRefGoogle Scholar
  27. 27.
    Veeck LL. An atlas of human gametes and conceptuses. An illustrated reference for assisted reproductive technology. New York: Parthenon Publishing; 1999.Google Scholar
  28. 28.
    Watson LN, Mottershead DG, Dunning KR, Robker RL, Gilchrist RB, Russell DL. Heparan sulfate proteoglycans regulate responses to oocyte paracrine signals in ovarian follicle morphogenesis. Endocrinology. 2012;153(9):4544–55. doi: 10.1210/en.2012-1181.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bayasula
    • 1
  • Akira Iwase
    • 1
    • 2
  • Hiroharu Kobayashi
    • 1
  • Maki Goto
    • 1
    • 2
  • Tatsuo Nakahara
    • 1
  • Tomoko Nakamura
    • 1
  • Mika Kondo
    • 1
  • Yoshinari Nagatomo
    • 1
  • Tomomi Kotani
    • 1
    • 2
  • Fumitaka Kikkawa
    • 1
  1. 1.Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaJapan
  2. 2.Department of Maternal and Perinatal MedicineNagoya University HospitalNagoyaJapan

Personalised recommendations