Skip to main content
Log in

A study of meiotic segregation in a fertile human population following ovarian stimulation with recombinant FSH-LH

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

The aim of the study is to investigate the meiotic segregation in fresh eggs from anonymous egg donors and to analyze the baseline levels of aneuploidy in this population.

Results

The study includes the largest series of donor eggs so far studied: 203 eggs from donors aged between 20 and 31 years. No diagnosis was obtained in 10.8 % of cases (22/ 203). The biopsy of the first and second polar bodies was completed in a sequential manner on day 0 and day 1 of embryo development. Chromosomes 13, 16, 18, 21 and 22 are analyzed by means of the FISH test. The diagnosable fertilized eggs gave an aneuploidy rate of 19.1 % (31/162), with 83.8 % (26/31) of the errors produced during meiosis I, 12.9 % (4/31) produced during meiosis II, and 3.2 % (1/31) produced during both meiosis I and II. The premature division of sister chromatids is the main source of meiotic error during Meiosis I, resulting in the creation of oocyte aneuploidy.

Conclusions

FISH analysis of the first and second polar body in donor oocytes gave an aneuploidy rate of 19.1 %. This study shows the majority of errors occur during Meiosis I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angell RR, Xian J, Keith J, Ledger W, Baird DT. First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenet Cell Genet. 1994;65(3):194–202.

    Article  PubMed  CAS  Google Scholar 

  2. Angell RR, Xian J, Keith J. Chromosome anomalies in human oocytes in relation to age. Hum Reprod. 1993;8(7):1047–54.

    PubMed  CAS  Google Scholar 

  3. Angell RR. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet. 1991;86(4):383–7.

    Article  PubMed  CAS  Google Scholar 

  4. Clyde JM, Gosden RG, Rutherford AJ, Picton HM. Demonstration of a mechanism of aneuploidy in human oocytes using Multifluor fluorescence in situ hybridization. Fertil Steril. 2001;76(4):837–40.

    Article  PubMed  CAS  Google Scholar 

  5. Cupisti S, Conn CM, Fragouli E, Whalley K, Mills JA, Faed MJ, et al. Sequential FISH analysis of oocytes and polar bodies reveals aneuploidy mechanisms. Prenat Diagn. 2003;23(8):663–8.

    Article  PubMed  CAS  Google Scholar 

  6. Fragouli E, Wells D, Thornhill A, Serhal P, Faed MJ, Harper JC, et al. Comparative genomic hybridization analysis of human oocytes and polar bodies. Hum Reprod. 2006;21(9):2319–28.

    Article  PubMed  CAS  Google Scholar 

  7. Fragouli E, Wells D, Whalley KM, Mills JA, Faed MJ, Delhanty JD. Increased susceptibility to maternal aneuploidy demonstrated by comparative genomic hybridization analysis of human MII oocytes and first polar bodies. Cytogenet Genome Res. 2006;114(1):30–8.

    Article  PubMed  CAS  Google Scholar 

  8. Fragouli E, Escalona A, Gutierrez-Mateo C, Tormasi S, Alfarawati S, Sepulveda S, et al. Comparative genomic hybridization of oocytes and first polar bodies from young donors. Reprod Biomed Online. 2009;19(2):228–37.

    Article  PubMed  CAS  Google Scholar 

  9. Gutiérrez-Mateo C, Benet J, Wells D, Colls P, Bermúdez MG, Sánchez-García JF, et al. Aneuploidy study of human oocytes first polar body comparative genomic hybridization and metaphase II fluorescence in situ hybridization analysis. Hum Reprod. 2004;19(12):2859–68.

    Article  PubMed  Google Scholar 

  10. Gutiérrez-Mateo C, Benet J, Starke H, Oliver-Bonet M, Munné S, Liehr T, et al. Karyotyping of human oocytes by cenMFISH, a new 24-colour centromere-specific technique. Hum Reprod. 2005;20(12):3395–401.

    Article  PubMed  Google Scholar 

  11. Gutiérrez-Mateo C, Wells D, Benet J, Sánchez-García JF, Bermúdez MG, Belil I, et al. Reliability of comparative genomic hybridization to detect chromosome abnormalities in first polar bodies and metaphase II oocytes. Hum Reprod. 2004;19(9):2118–25.

    Article  PubMed  Google Scholar 

  12. Hassold T, Abruzzo M, Adkins K, Griffin D, Merrill M, Millie E, et al. Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen. 1996;28(3):167–75. Review.

    Article  PubMed  CAS  Google Scholar 

  13. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91. Review.

    Article  PubMed  CAS  Google Scholar 

  14. Hunt P, LeMaire R, Embury P, Sheean L, Mroz K. Analysis of chromosome behavior in intact mammalian oocytes: monitoring the segregation of a univalent chromosome during female meiosis. Hum Mol Genet. 1995;4(11):2007–12.

    Article  PubMed  CAS  Google Scholar 

  15. Kamiguchi Y, Rosenbusch B, Sterzik K, Mikamo K. Chromosomal analysis of unfertilized human oocytes prepared by a gradual fixation-air drying method. Hum Genet. 1993;90(5):533–41.

    Article  PubMed  CAS  Google Scholar 

  16. Keskintepe L, Sher G, Keskintepe M. Reproductive oocyte/embryo genetic analysis: comparison between fluorescence in-situ hybridization and comparative genomic hybridization. Reprod Biomed Online. 2007;15(3):303–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak, Janzen J. Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online. 2011;22(1):2–8.

    Article  PubMed  Google Scholar 

  18. Li Y, Feng HL, Cao YJ, Zheng GJ, Yang Y, Mullen S, et al. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil Steril. 2006;85(4):827–32.

    Article  PubMed  Google Scholar 

  19. Munné S, Ary J, Zouves C, Escudero T, Barnes F, Cinioglu C, et al. Wide range of chromosome abnormalities in the embryos of young egg donors. Reprod Biomed Online. 2006;12(3):340–6.

    Article  PubMed  Google Scholar 

  20. Nicolaidis P, Petersen MB. Origin and mechanisms of non-disjunction in human autosomal trisomies. Hum Reprod. 1998;13(2):313–9. Review.

    Article  PubMed  CAS  Google Scholar 

  21. Obradors A, Rius M, Cuzzi J, et al. Errors at mitotic segregation early in oogenesis and at first meiotic division in oocytes from donor females: comparative genomic hybridization analyzes in metaphase II oocytes and their first polar body. Fertil Steril. 2010;93:675–9.

    Article  PubMed  Google Scholar 

  22. Pellestor F, Anahory T, Hamamah S. Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet Genome Res. 2005;111(3–4):206–12.

    Article  PubMed  CAS  Google Scholar 

  23. Pellestor F, Andréo B, Anahory T, Hamamah S. PRINS as an efficient tool for aneuploidy assessment in human oocytes and preimplantation embryos. Methods Mol Biol. 2006;334:151–60.

    PubMed  Google Scholar 

  24. Pellestor F, Andréo B, Arnal F, Humeau C, Demaille J. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum Genet. 2003;112(2):195–203.

    PubMed  Google Scholar 

  25. Reis Soares S, Rubio C, Rodrigo L, Simón C, Remohí J, Pellicer A. High frequency of chromosomal abnormalities in embryos obtained from oocyte donation cycles. Fertil Steril. 2003;80(3):656–7.

    Article  PubMed  Google Scholar 

  26. Requena A, Bronet F, Guillen A, Agudo D, Bou C, García-Velasco JA. The impact of in-vitro maturation of oocytes on aneuploidy rate. Reprod Biomed Online. 2009;18(6):777–83.

    Article  PubMed  Google Scholar 

  27. Sandalinas M, Márquez C, Munné S. Spectral karyotyping of fresh, non-inseminated oocytes. Mol Hum Reprod. 2002;8(6):580–5.

    Article  PubMed  Google Scholar 

  28. Sher G, Keskintepe L, Keskintepe M, et al. Oocyte karyotyping by comparative genomic hybridization [correction of hybrydization] provides a highly reliable method for selecting ‘competent’ embryos, markedly improving in vitro fertilization outcome: a multiphase study. Fertil Steril. 2007;87:1033–40.

    Article  PubMed  CAS  Google Scholar 

  29. Verlinsky Y, Cieslak J, Ivakhnenko V, Evsikov S, Wolf G, White M, et al. Chromosomal abnormalities in the first and second polar body. Mol Cell Endocrinol. 2001;183 Suppl 1:S47–9.

    Article  PubMed  CAS  Google Scholar 

  30. Verlinsky Y, Cieslak J, Ivakhnenko V, Evsikov S, Wolf G, White M, et al. Prevention of age-related aneuploidies by polar body testing of oocytes. J Assist Reprod Genet. 1999;16(4):165–9.

    Article  PubMed  CAS  Google Scholar 

  31. Verlinsky Y, Kuliev A. Atlas of preimplantation genetic diagnosis. Second edition. Taylor and Francis Group. 2005.

  32. Verlinsky Y, Lerner S, Illkevitch N, Kuznetsov V, Kuznetsov I, Cieslak J, et al. Is there any predictive value of first polar body morphology for embryo genotype or developmental potential? Reprod Biomed Online. 2003;7(3):336–41.

    Article  PubMed  Google Scholar 

  33. Vlaisavljevic V, Krizancic Bombek L, Vokac NK, Kovacic B, Cizek-Sajko M. How safe is germinal vesicle stage oocyte rescue? Aneuploidy analysis of in vitro matured oocytes. Eur J Obstet Gynecol Reprod Biol. 2007;134(2):213–9.

    Article  PubMed  CAS  Google Scholar 

  34. Zenzes MT, Casper RF. Cytogenetics of human oocytes, zygotes, and embryos after in vitro fertilization. Hum Genet. 1992;88(4):367–75. Review.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Leonardo Marques Foundation

Funding Merck Serono

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Velilla.

Additional information

Capsule FISH analysis of the first and second polar body in donor oocytes gave an aneuploidy rate of 19.1%. This study shows the majority of errors (83.8%) occur during Meiosis I.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velilla, E., Fernández, S.F., Suñol, J. et al. A study of meiotic segregation in a fertile human population following ovarian stimulation with recombinant FSH-LH. J Assist Reprod Genet 30, 269–274 (2013). https://doi.org/10.1007/s10815-012-9905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9905-9

Keywords

Navigation