Skip to main content
Log in

Addition of zinc to human ejaculate prior to cryopreservation prevents freeze-thaw-induced DNA damage and preserves sperm function

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To study the effect of addition of zinc to human semen sample prior to cryopreservation on post-thaw sperm quality and function.

Methods

Semen samples were collected from men attending university infertility clinic for semen analysis (n=109). Liquefied semen samples were cryopreserved in glycerol-egg yolk- citrate medium with or without the prior addition of zinc (100 μM) and stored in liquid nitrogen. After 10 days, the semen samples were thawed to assess the outcome. Sperm motility, DNA integrity, mitochondrial potential and the ability of spermatozoa to undergo capacitation and acrosome reaction was assessed in post-thaw samples.

Results

Semen samples cryopreserved after addition of zinc had a significantly higher percentage of sperm with intact DNA (p<0.001), mitochondrial function (p<0.001) and progressive motility (p<0.01) compared to the semen samples cryopreserved without zinc supplementation. Apart from this, ability to undergo capacitation and acrosome reaction in vitro was significantly higher in semen samples cryopreserved with zinc (p<0.0001 and p<0.001 respectively).

Conclusions

Addition of zinc to semen samples prior to cryopreservation helps in preventing the freeze-thaw-induced sperm DNA damage and loss of sperm function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Critser JK, Huse-Benda AR, Aaker DV, Arneson BW, Ball GD. Cryopreservation of human spermatozoa. The effect of cryoprotectants on motility. Fertil Steril. 1988;50:314–20.

    PubMed  CAS  Google Scholar 

  2. Zribi N, Chakroun NF, EI Euch H, Gargouri J, Bahloul A, Keskes LA. Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;93:159–66.

    Article  PubMed  CAS  Google Scholar 

  3. O’Connell M, McClure N, Lewis SE. The effect of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod. 2002;17:704–9.

    Article  PubMed  Google Scholar 

  4. Donnelly ET, McClure N, Lewis SEM. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril. 2001;76:892–900.

    Article  PubMed  CAS  Google Scholar 

  5. Donnelly ET, Steele KE, McClure N, Lewis SEM. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod. 2001;16:1191–9.

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida H, Hoshiai H, Fukaya T, Yajima A. Fertilization of fresh and frozen spermatozoa. Assist Reprod Technol Androl. 1990;1:164–72.

    Google Scholar 

  7. Bakos HW, Thompson JG, Feil D, Lane M. Sperm DNA damage is associated with assisted reproductive technology pregnancy. Int J Androl. 2008;31:518–26.

    Article  PubMed  CAS  Google Scholar 

  8. Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod. 2009;24:2061–70.

    Article  PubMed  CAS  Google Scholar 

  9. Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13:896–900.

    Article  PubMed  CAS  Google Scholar 

  10. Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of the human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13:1429–36.

    Article  PubMed  CAS  Google Scholar 

  11. Duru NK, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril. 2000;74:1200–7.

    Article  Google Scholar 

  12. Branco CS, Garcez ME, Pasqualotto FF, Erdtman B, Salvador M. Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology. 2010;60:235–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kalthur G, Raj S, Thiyagarajan A, Kumar S, Kumar P, Adiga SK. Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw-induced DNA damage. Fertil Steril. 2011;95:1149–51.

    Article  PubMed  CAS  Google Scholar 

  14. Kaji M. Zinc in endocrinology. Pediatr Int. 2001;16:1–7.

    Google Scholar 

  15. Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielthuis GA, Steegers-Theunissen RP. Effect of folic acid and zinc sulphate on male factor sub fertility, a double blind, randomized placed controlled trial. Fertil Steril. 2002;77:491–8.

    Article  PubMed  Google Scholar 

  16. Suzuki T, Nakajima K, Yamamoto A, Yamanaka H. Metallothionein binding zinc inhibits nuclear chromatin decondensation of human spermatozoa. Andrologia. 1995;27:161–4.

    Article  PubMed  CAS  Google Scholar 

  17. Bjorndahl L, Kvist U. A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Syst Biol Reprod Med. 2011;57:86–92.

    Article  PubMed  Google Scholar 

  18. World Health Organization. Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  19. Kalthur G, Adiga SK, Upadhya D, Rao S, Kumar P. Effect of cryopreservation on sperm DNA integrity in patients with teratospermia. Fertil Steril. 2008;89:1723–7.

    Article  PubMed  Google Scholar 

  20. Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24:59–66.

    PubMed  CAS  Google Scholar 

  21. Johnson LV, Walsh ML, Chen LB. Localization of mitochondria in living cells by rhodamine 123. Proc Natl Acad Sci USA. 1980;77:990–4.

    Article  PubMed  CAS  Google Scholar 

  22. Colas C, Grasa P, Casao A, Gallego M, Abecia JA, Forcada F. Changes in calmodulin immunocytochemical localization associated with capacitation and acrosomal exocytosis of ram spermatozoa. Theriogenology. 2009;71:789–800.

    Article  PubMed  CAS  Google Scholar 

  23. Garde JJ, Ortiz N, García A, Gallego L. Use of a triple-stain technique to detect viability and acrosome reaction in deer spermatozoa. Arch Androl. 1997;39:1–9.

    Article  PubMed  CAS  Google Scholar 

  24. Chohan KR, Griffin JT, Carrell DT. Evaluation of chromatin integrity in human sperm using acridine orange staining with different fixatives and after cryopreservation. Andrologia. 2004;36:321–6.

    Article  PubMed  CAS  Google Scholar 

  25. Adiga SK, Khan Z, Upadhya D, Kalthur G, Kumar P. Ability of deoxyribonucleic acid-damaged sperm to withstand freeze-thaw-induced damage during cryopreservation. Fertil Steril. 2009;92:959–63.

    Article  PubMed  CAS  Google Scholar 

  26. Erenpreiss J, Elzanaty S, Giwercman A. Sperm DNA damage in men from infertile couples. Asian J Androl. 2008;10:786–90.

    Article  PubMed  Google Scholar 

  27. Hammadeh ME, Askari AS, Georg T, Rosenbaum P, Schmidt W. Effect of freeze–thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int J Androl. 1999;22:155–62.

    Article  PubMed  CAS  Google Scholar 

  28. Varghese AC, Bragais FM, Mukhopadhyay D, Kundu S, Pal M, Bhattacharyya AK. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia. 2009;41:207–15.

    Article  PubMed  CAS  Google Scholar 

  29. Berg JM. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem. 1990;265:6513–6.

    PubMed  CAS  Google Scholar 

  30. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8:227.

    Article  PubMed  Google Scholar 

  31. Kvist U, Bjorndahl L. Zinc preserves an inherent capacity for human sperm chromatin decondensation. Acta Physiol Scand. 1985;24:195–200.

    Article  Google Scholar 

  32. Danscher G, Hammen R, Fjerdingstad E, Rebbe H. Zinc content of human ejaculate and the motility of sperm cells. Int J Androl 1978;1:1576–81.

    Google Scholar 

  33. Riffo M, Leiva S, Astudillo J. Effect of zinc on human sperm motility and the acrosome reaction. Int J Androl. 1992;15:229–37.

    Article  PubMed  CAS  Google Scholar 

  34. Stankovic H, Mikac-Devic D. Zinc and copper in human semen. Clin Chem Acta. 1976;70:123–6.

    Article  CAS  Google Scholar 

  35. Caldamone AA, Freytag MK, Cockett AT. Seminal zinc and male infertility. Urology. 1979;13:280–1.

    Article  PubMed  CAS  Google Scholar 

  36. Calvin HI, Hwang FH-F, Wohlrab H. Localisation of zinc in a dense fiber-connecting piece fraction of rat sperm tails analogous chemically to hair keratin. Biol Reprod. 1975;13:228–39.

    Article  PubMed  CAS  Google Scholar 

  37. Bettger WJ, O’Dell BL. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 1981;28:1425–38.

    Article  PubMed  CAS  Google Scholar 

  38. Kendall NR, McMullen S, Green A, Rodway RG. The effect of a zinc, cobalt and selenium soluble glass bolus on trace element status and semen quality of ram lambs. Anim Reprod Sci. 2000;62:277–83.

    Article  PubMed  CAS  Google Scholar 

  39. Andrews JC, Nolan JP, Hammerstedt RH, Bavister BD. Role of zinc during hamster sperm capacitation. Biol Reprod. 1994;51:1238–47.

    Article  PubMed  CAS  Google Scholar 

  40. Bilaspuri GS, Babbar BK. Effect of albumin and zinc on capacitation and acrosome reaction of buffalo spermatozoa. Indian J Anim Sci. 2007;77:688–92.

    CAS  Google Scholar 

  41. Liu DY, Sie BS, Liu ML, Agresta F, Baker HW. Relationship between seminal plasma zinc concentration and spermatozoa–zona pellucida binding and the ZP-induced acrosome reaction in sub fertile men. Asian J Androl. 2009;11:499–507.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge financial assistance from Kasturba Medical College, Manipal, India, in the form of Postgraduate thesis grant sanctioned to APK (Grant No. PGR042). Technical support from Ms. Jayalaxmi Pai and Ms. Kirthi Patil (Clinical Embryology, Kasturba Medical College, Manipal) and Ms. Gimna Rathesh (Division of Nutrition, St. John’s Research Institute, St. John’s National Academy of Health Sciences, Bangalore) is thankfully acknowledged. Authors thank Dr. Prashanth Naik, Mangalore University for critical editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guruprasad Kalthur.

Additional information

Capsule

Addition of zinc to liquefied ejaculate prior to cryopreservation using glycerol- egg yolk- citrate buffered medium protects spermatozoa from freeze-thaw-induced DNA damage and loss of sperm function.

Author contribution

APK, SK, KG and SRS performed the study (APK and SK had equal contribution)

GK designed the study and wrote the paper

PT, SKA and PK helped in analyzing the data and writing the paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotdawala, A.P., Kumar, S., Salian, S.R. et al. Addition of zinc to human ejaculate prior to cryopreservation prevents freeze-thaw-induced DNA damage and preserves sperm function. J Assist Reprod Genet 29, 1447–1453 (2012). https://doi.org/10.1007/s10815-012-9894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9894-8

Keywords

Navigation