Skip to main content
Log in

Follicular fluid hormonal profile and cumulus cell gene expression in controlled ovarian hyperstimulation with recombinant FSH: effects of recombinant LH administration

  • ASSISTED REPRODUCTION TECHNOLOGIES
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Down-regulation with gonadodropin-releasing agonist (GnRH-a) protocol during IVF stimulation leads to a severe endogenous LH suppression, which may affect the follicular development. The aim of the study was to evaluate the effects of recombinant LH (r-LH) administration, during late follicular development stages, in recombinant FSH (r-FSH) stimulated cycles on follicular fluid (FF) parameters and on cumulus cell quality.

Methods

Twenty patients undergoing IVF were stimulated in a long GnRH agonist protocol with r-FSH alone or with r-LH supplementation when the leading follicle reached diameter of 14 mm. FF was collected at the time of oocyte retrieval from 32 follicles ≥ 18 mm. Serum FSH, LH, estradiol (E2), and progesterone (P4) were evaluated on the day of hCG administration. Intra-follicular E2, P4, AMH and TGF-β were assayed. Total RNA from 18 individual cumuli was isolated for gene expression analyses.

Results

R-LH increased FF P4 levels. FF TGF-β levels and PTGS2 and HAS2 expression in cumulus cells (CCs) positively correlated with increased P4 levels observed in FFs, while a negative correlation was found between P4 and AMH levels.

Conclusions

FF positive correlation between P4 and TGF-β levels and CC expression of PTGS2 and HAS2 suggest an association with a better follicle quality. In addition, our data suggest that late follicular phase r-LH supplementation leads to a more advanced stage of follicular maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abe M, Harpel JG, Metz CN, Nunes I, Loskutoff DJ, Rifkin DB. An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal Biochem. 1994;216:276–84.

    Article  PubMed  CAS  Google Scholar 

  2. Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14:711–9.

    Article  PubMed  CAS  Google Scholar 

  3. Baarends WM, Uilenbroek JT, Kramer P, Hoogerbrugge JW, van Leeuwen EC, Themmen AP, et al. Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology. 1995;136:4951–62.

    Article  PubMed  CAS  Google Scholar 

  4. Balasch J, Miro F, Burzaco I, Casamitjana R, Civico S, Ballesca JL, et al. The role of luteinizing hormone in human follicle development and oocyte fertility: evidence from in-vitro fertilization in a woman with long-standing hypogonadotrophic hypogonadism and using recombinant human follicle stimulating hormone. Hum Reprod. 1995;10:1678–83.

    PubMed  CAS  Google Scholar 

  5. Barrenetxea G, Agirregoikoa JA, Jimenez MR, de Larruzea AL, Ganzabal T, Carbonero K. Ovarian response and pregnancy outcome in poor-responder women: a randomized controlled trial on the effect of luteinizing hormone supplementation on in vitro fertilization cycles. Fertil Steril. 2008;89:546–53.

    Article  PubMed  CAS  Google Scholar 

  6. Bosch E, Vidal C, Labarta E, Simon C, Remohi J, Pellicer A. Highly purified hMG versus recombinant FSH in ovarian hyperstimulation with GnRH antagonists-a randomized study. Hum Reprod. 2008;23:2346–51.

    Article  PubMed  CAS  Google Scholar 

  7. Caglar GS, Asimakopoulos B, Nikolettos N, Diedrich K, Al-Hasani S. Recombinant LH in ovarian stimulation. Reprod Biomed Online. 2005;10:774–85.

    Article  PubMed  CAS  Google Scholar 

  8. Canipari R. Oocyte-granulosa cell interactions. Hum Reprod Update. 2000;6:279–89.

    Article  PubMed  CAS  Google Scholar 

  9. Canipari R, Cellini V, Cecconi S. The ovary feels fine when paracrine and autocrine networks cooperate with gonadotropins in the regulation of folliculogenesis. Curr Pharm Des. 2012;18:245–55.

    Article  PubMed  CAS  Google Scholar 

  10. Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134:645–50.

    Article  PubMed  CAS  Google Scholar 

  11. Couzinet B, Lestrat N, Brailly S, Forest M, Schaison G. Stimulation of ovarian follicular maturation with pure follicle-stimulating hormone in women with gonadotropin deficiency. J Clin Endocrinol Metab. 1988;66:552–6.

    Article  PubMed  CAS  Google Scholar 

  12. De Placido G, Alviggi C, Perino A, Strina I, Lisi F, Fasolino A, et al. Recombinant human LH supplementation versus recombinant human FSH (rFSH) step-up protocol during controlled ovarian stimulation in normogonadotrophic women with initial inadequate ovarian response to rFSH. A multicentre, prospective, randomized controlled trial. Hum Reprod. 2005;20:390–6.

    Article  PubMed  Google Scholar 

  13. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW, et al. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology. 2002;143:1076–84.

    Article  PubMed  CAS  Google Scholar 

  14. Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction. 2002;124:601–9.

    Article  PubMed  CAS  Google Scholar 

  15. Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13:1035–48.

    Article  PubMed  CAS  Google Scholar 

  16. Erickson GF, Wang C, Hsueh AJ. FSH induction of functional LH receptors in granulosa cells cultured in a chemically defined medium. Nature. 1979;279:336–8.

    Article  PubMed  CAS  Google Scholar 

  17. Esposito MA, Barnhart KT, Coutifaris C, Patrizio P. Role of periovulatory luteinizing hormone concentrations during assisted reproductive technology cycles stimulated exclusively with recombinant follicle-stimulating hormone. Fertil Steril. 2001;75:519–24.

    Article  PubMed  CAS  Google Scholar 

  18. Fabregues F, Creus M, Penarrubia J, Manau D, Vanrell JA, Balasch J. Effects of recombinant human luteinizing hormone supplementation on ovarian stimulation and the implantation rate in down-regulated women of advanced reproductive age. Fertil Steril. 2006;85:925–31.

    Article  PubMed  CAS  Google Scholar 

  19. Fanchin R, de Ziegler D, Taieb J, Hazout A, Frydman R. Premature elevation of plasma progesterone alters pregnancy rates of in vitro fertilization and embryo transfer. Fertil Steril. 1993;59:1090–4.

    PubMed  CAS  Google Scholar 

  20. Fanchin R, Louafi N, Mendez Lozano DH, Frydman N, Frydman R, Taieb J. Per-follicle measurements indicate that anti-mullerian hormone secretion is modulated by the extent of follicular development and luteinization and may reflect qualitatively the ovarian follicular status. Fertil Steril. 2005;84:167–73.

    Article  PubMed  CAS  Google Scholar 

  21. Fanchin R, Righini C, Olivennes F, Ferreira AL, de Ziegler D, Frydman R. Consequences of premature progesterone elevation on the outcome of in vitro fertilization: insights into a controversy. Fertil Steril. 1997;68:799–805.

    Article  PubMed  CAS  Google Scholar 

  22. Fanchin R, Schonauer LM, Righini C, Frydman N, Frydman R, Taieb J. Serum anti-Mullerian hormone dynamics during controlled ovarian hyperstimulation. Hum Reprod. 2003;18:328–32.

    Article  PubMed  CAS  Google Scholar 

  23. Fanchin R, Schonauer LM, Righini C, Guibourdenche J, Frydman R, Taieb J. Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum Reprod. 2003;18:323–7.

    Article  PubMed  CAS  Google Scholar 

  24. Ferraretti AP, Gianaroli L, Magli MC, D’angelo A, Farfalli V, Montanaro N. Exogenous luteinizing hormone in controlled ovarian hyperstimulation for assisted reproduction techniques. Fertil Steril. 2004;82:1521–6.

    Article  PubMed  CAS  Google Scholar 

  25. Filicori M, Cognini GE. Roles and Novel Regimens of Luteinizing Hormone and Follicle-Stimulating Hormone in Ovulation Induction. J Clin Endocrinol Metab. 2001;86:1437–41.

    Article  PubMed  CAS  Google Scholar 

  26. Fournet N, Weitsman SR, Zachow RJ, Magoffin DA. Transforming growth factor-beta inhibits ovarian 17 alpha-hydroxylase activity by a direct noncompetitive mechanism. Endocrinology. 1996;137:166–74.

    Article  PubMed  CAS  Google Scholar 

  27. Fried G, Wramsby H. Increase in transforming growth factor beta1 in ovarian follicular fluid following ovarian stimulation and in-vitro fertilization correlates to pregnancy. Hum Reprod. 1998;13:656–9.

    Article  PubMed  CAS  Google Scholar 

  28. Fried G, Wramsby H, Tally M. Transforming growth factor-beta1, insulin-like growth factors, and insulin-like growth factor binding proteins in ovarian follicular fluid are differentially regulated by the type of ovarian hyperstimulation used for in vitro fertilization. Fertil Steril. 1998;70:129–34.

    Article  PubMed  CAS  Google Scholar 

  29. Griesinger G, Schultze-Mosgau A, Dafopoulos K, Schroeder A, Schroer A, von Otte S, et al. Recombinant luteinizing hormone supplementation to recombinant follicle-stimulating hormone induced ovarian hyperstimulation in the GnRH-antagonist multiple-dose protocol. Hum Reprod. 2005;20:1200–6.

    Article  PubMed  CAS  Google Scholar 

  30. Hernandez ER, Hurwitz A, Payne DW, Dharmarajan AM, Purchio AF, Adashi EY. Transforming growth factor-beta 1 inhibits ovarian androgen production: gene expression, cellular localization, mechanisms(s), and site(s) of action. Endocrinology. 1990;127:2804–11.

    Article  PubMed  CAS  Google Scholar 

  31. Hill MJ, Levens ED, Levy G, Ryan ME, Csokmay JM, DeCherney AH, et al. The use of recombinant luteinizing hormone in patients undergoing assisted reproductive techniques with advanced reproductive age: a systematic review and meta-analysis. Fertil Steril. 2012;97:1108–14.

    Article  PubMed  CAS  Google Scholar 

  32. Hillier SG. Gonadotropic control of ovarian follicular growth and development. Mol Cell Endocrinol. 2001;179:39–46.

    Article  PubMed  CAS  Google Scholar 

  33. Hillier SG. Paracrine support of ovarian stimulation. Mol Hum Reprod. 2009;15:843–50.

    Article  PubMed  CAS  Google Scholar 

  34. Humaidan P, Bungum M, Bungum L, Yding AC. Effects of recombinant LH supplementation in women undergoing assisted reproduction with GnRH agonist down-regulation and stimulation with recombinant FSH: an opening study. Reprod Biomed Online. 2004;8:635–43.

    Article  PubMed  CAS  Google Scholar 

  35. Legro RS, Ary BA, Paulson RJ, Stanczyk FZ, Sauer MV. Premature luteinization as detected by elevated serum progesterone is associated with a higher pregnancy rate in donor oocyte in-vitro fertilization. Hum Reprod. 1993;8:1506–11.

    PubMed  CAS  Google Scholar 

  36. Li HK, Kuo TY, Yang HS, Chen LR, Li SS, Huang HW. Differential gene expression of bone morphogenetic protein 15 and growth differentiation factor 9 during in vitro maturation of porcine oocytes and early embryos. Anim Reprod Sci. 2008;103:312–22.

    Article  PubMed  CAS  Google Scholar 

  37. Lisi F, Rinaldi L, Fishel S, Caserta D, Lisi R, Campbell A. Evaluation of two doses of recombinant luteinizing hormone supplementation in an unselected group of women undergoing follicular stimulation for in vitro fertilization. Fertil Steril. 2005;83:309–15.

    Article  PubMed  CAS  Google Scholar 

  38. Lobb DK. Expression and actions of transforming growth factors during human follicular development. Fertil Steril. 2009;92:1080–4.

    Article  PubMed  CAS  Google Scholar 

  39. Magoffin DA, Hubert-Leslie D, Zachow RJ. Estradiol-17 beta, insulin-like growth factor-I, and luteinizing hormone inhibit secretion of transforming growth factor beta by rat ovarian theca-interstitial cells. Biol Reprod. 1995;53:627–35.

    Article  PubMed  CAS  Google Scholar 

  40. Marrs R, Meldrum D, Muasher S, Schoolcraft W, Werlin L, Kelly E. Randomized trial to compare the effect of recombinant human FSH (follitropin alfa) with or without recombinant human LH in women undergoing assisted reproduction treatment. Reprod Biomed Online. 2004;8:175–82.

    Article  PubMed  CAS  Google Scholar 

  41. Matorras R, Prieto B, Exposito A, Mendoza R, Crisol L, Herranz P, et al. Mid-follicular LH supplementation in women aged 35–39 years undergoing ICSI cycles: a randomized controlled study. Reprod Biomed Online. 2009;19:879–87.

    Article  PubMed  CAS  Google Scholar 

  42. May JV, Turzcynski CJ, Ramos L, Mau YH. Differential involvement of protein kinase C in the regulation of transforming growth factor-beta (TGF-beta) secretion by porcine theca and granulosa cells in vitro. Endocrinology. 1995;136:1319–22.

    Article  PubMed  CAS  Google Scholar 

  43. McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.

    Article  PubMed  CAS  Google Scholar 

  44. Mochtar MH, Van d, V, Ziech M, van WM (2007) Recombinant Luteinizing Hormone (rLH) for controlled ovarian hyperstimulation in assisted reproductive cycles. Cochrane Database Syst Rev CD005070

  45. Mulheron GW, Bossert NL, Lapp JA, Walmer DK, Schomberg DW. Human granulosa-luteal and cumulus cells express transforming growth factors-beta type 1 and type 2 mRNA. J Clin Endocrinol Metab. 1992;74:458–60.

    Article  PubMed  CAS  Google Scholar 

  46. Pezzuto A, Ferrari B, Coppola F, Nardelli GB. LH supplementation in down-regulated women undergoing assisted reproduction with baseline low serum LH levels. Gynecol Endocrinol. 2010;26:118–24.

    Article  PubMed  CAS  Google Scholar 

  47. Ruvolo G, Bosco L, Pane A, Morici G, Cittadini E, Roccheri MC. Lower apoptosis rate in human cumulus cells after administration of recombinant luteinizing hormone to women undergoing ovarian stimulation for in vitro fertilization procedures. Fertil Steril. 2007;87:542–6.

    Article  PubMed  CAS  Google Scholar 

  48. Salustri A, Camaioni A, D’Alessandris C. Endocrine and paracrine regulation of cumulus expansion. Zygote. 1996;4:313–5.

    Article  PubMed  CAS  Google Scholar 

  49. Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development. 2004;131:1577–86.

    Article  PubMed  CAS  Google Scholar 

  50. Santos MA, Kuijk EW, Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo. Reproduction. 2010;139:23–34.

    Article  PubMed  CAS  Google Scholar 

  51. Silverberg KM, Burns WN, Olive DL, Riehl RM, Schenken RS. Serum progesterone levels predict success of in vitro fertilization/embryo transfer in patients stimulated with leuprolide acetate and human menopausal gonadotropins. J Clin Endocrinol Metab. 1991;73:797–803.

    Article  PubMed  CAS  Google Scholar 

  52. Smitz J, Andersen AN, Devroey P, Arce JC. Endocrine profile in serum and follicular fluid differs after ovarian stimulation with HP-hMG or recombinant FSH in IVF patients. Hum Reprod. 2007;22:676–87.

    Article  PubMed  CAS  Google Scholar 

  53. Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279:20–30.

    Article  PubMed  CAS  Google Scholar 

  54. Sugiura K, Su YQ, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134:2593–603.

    Article  PubMed  CAS  Google Scholar 

  55. Sullivan MW, Stewart-Akers A, Krasnow JS, Berga SL, Zeleznik AJ. Ovarian responses in women to recombinant follicle-stimulating hormone and luteinizing hormone (LH): a role for LH in the final stages of follicular maturation. J Clin Endocrinol Metab. 1999;84:228–32.

    Article  PubMed  CAS  Google Scholar 

  56. Tesarik J, Mendoza C. Effects of exogenous LH administration during ovarian stimulation of pituitary down-regulated young oocyte donors on oocyte yield and developmental competence. Hum Reprod. 2002;17:3129–37.

    Article  PubMed  CAS  Google Scholar 

  57. Weenen C, Laven JS, Von Bergh AR, Cranfield M, Groome NP, Visser JA, et al. Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod. 2004;10:77–83.

    Article  PubMed  CAS  Google Scholar 

  58. Westergaard LG, Laursen SB, Andersen CY. Increased risk of early pregnancy loss by profound suppression of luteinizing hormone during ovarian stimulation in normogonadotrophic women undergoing assist ed reproduction. Hum Reprod. 2000;15:1003–8.

    Article  PubMed  CAS  Google Scholar 

  59. Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol. 2001;15:854–66.

    Article  PubMed  CAS  Google Scholar 

  60. Yang SH, Son WY, Yoon SH, Ko Y, Lim JH. Correlation between in vitro maturation and expression of LH receptor in cumulus cells of the oocytes collected from PCOS patients in HCG-primed IVM cycles. Hum Reprod. 2005;20:2097–103.

    Article  PubMed  CAS  Google Scholar 

  61. Zeleznik AJ. Follicle selection in primates: “many are called but few are chosen”. Biol Reprod. 2001;65:655–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MLECs were kindly provided by Dr.D.B. Rifkin, New York University School of Medicine, New York. We thank Dr. Giovanni Ruvolo, Centro di Biologia della Riproduzione, Palermo, Italy, for isolating cumulus cells; Dr. Paola Canipari for reviewing the English in the manuscript.

This study was supported by “La Sapienza” University of Rome Ateneo Federato 2009–2010 to R.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Canipari.

Additional information

Marzia Barberi and Beatrice Ermini contributed equally to this work Sandra Cecconi and Rita Canipari contributed equally as co-senior authors

Capsule LH supplementation to an IVF stimulation with r-FSH leads to a more advanced stage of follicular maturation in the study population which presented normal or low LH levels after pituitary GnRH-a suppression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barberi, M., Ermini, B., Morelli, M.B. et al. Follicular fluid hormonal profile and cumulus cell gene expression in controlled ovarian hyperstimulation with recombinant FSH: effects of recombinant LH administration. J Assist Reprod Genet 29, 1381–1391 (2012). https://doi.org/10.1007/s10815-012-9893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9893-9

Keywords

Navigation