Skip to main content

Advertisement

Log in

Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes

  • ASSISTED REPRODUCTION TECHNOLOGIES
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

We previously reported associations between trace concentrations of Hg, Cd and Pb in blood and urine and reproductive outcomes for women undergoing in-vitro fertilization (IVF). Here we assess measurements in single follicular fluid (FF) specimens from 46 women as a presumably more relevant marker of dose for reproductive toxicity.

Methods

FF specimens were analyzed for Hg, Cd and Pb using sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). Variability sources were assessed by nested ANOVA. Multivariable regression was used to evaluate associations for square root transformed metals with IVF outcomes, adjusting for confounders.

Results

An inverse association is detected for FF Pb and fertilization (relative risk (RR) = 0.68, P = 0.026), although positive for Cd (RR = 9.05, P = 0.025). While no other statistically significant associations are detected, odds ratios (OR) are increased for embryo cleavage with Hg (OR = 3.83, P = 0.264) and Cd (OR = 3.18, P = 0.644), and for embryo fragmentation with Cd (OR = 4.08, P = 0.586) and Pb (OR = 2.22, P = 0.220). Positive estimates are observed for Cd with biochemical (RR = 19.02, P = 0.286) and clinical pregnancies (RR = 38.80, P = 0.212), yet with very low precision.

Conclusions

We have identified associations between trace amounts of Pb and Cd in FF from a single follicle, and oocyte fertilization. Yet, the likelihood of biological variation in trace element concentrations within and between follicles, coupled with levels that are near the limits of detection suggest that future work should examine multiple follicles using a ‘one follicle-one oocyte/embryo’ approach. A larger study is merited to assess more definitively the role that these environmental factors could play with respect to egg quality in IVF programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATSDR. Toxicological profile for mercury. Atlanta: U.S. Agency for Toxic Substances and Disease Registry; 1999.

    Google Scholar 

  2. ATSDR. Toxicological profile for lead. Atlanta: U.S. Agency for Toxic Substances and Disease Registry; 2007.

    Google Scholar 

  3. ATSDR. Toxicological profile for cadmium. Atlanta: U.S. Agency for Toxic Substances and Disease Registry; 2008.

    Google Scholar 

  4. Mendola P, Messer LC, Rappazzo K. Science linking environmental contaminant exposures with fertility and reproductive health impacts in the adult female. Fertil Steril. 2008;89(2, Supplement 1):e81–94.

    Article  PubMed  Google Scholar 

  5. Younglai EV, Holloway AC, Foster WG. Environmental and occupational factors affecting fertility and IVF success. Hum Reprod Update. 2005;11(1):43–57.

    Article  PubMed  Google Scholar 

  6. CDC. Fourth National Report on Human Exposure to Environmental Chemicals-Updated Tables, February 2012. Atlanta: U.S. Centers for Disease Control and Prevention; 2012.

    Google Scholar 

  7. Al-Saleh I, Coskun S, Mashhour A, Shinwari N, El-Doush I, Billedo G, et al. Exposure to heavy metals (lead, cadmium and mercury) and its effect on the outcome of in-vitro fertilization treatment. Int J Hyg Environ Health. 2008;211(5–6):560–79.

    Article  PubMed  CAS  Google Scholar 

  8. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney AM, Lynch CD, Gore-Langton RE, et al. Heavy metals and couple fecundity, the LIFE Study. Chemosphere. 2012;87(11):1201–7.

    Article  PubMed  CAS  Google Scholar 

  9. Chang S-H, Cheng B-H, Lee S-L, Chuang H-Y, Yang C-Y, Sung F-C, et al. Low blood lead concentration in association with infertility in women. Environ Res. 2006;101(3):380–6.

    Article  PubMed  CAS  Google Scholar 

  10. Choy CMY, Lam CWK, Cheung LTF, Briton-Jones CM, Cheung LP, Haines CJ. Infertility, blood mercury concentrations and dietary seafood consumption: a case–control study. Br J Obstet Gynaecol. 2002;109(10):1121–5.

    CAS  Google Scholar 

  11. Cole DC, Wainman B, Sanin LH, Weber JP, Muggah H, Ibrahim S. Environmental contaminant levels and fecundability among non-smoking couples. Reprod Toxicol. 2006;22(1):13–9.

    Article  PubMed  CAS  Google Scholar 

  12. Silberstein T, Saphier O, Paz-Tal O, Trimarchi JR, Gonzalez L, Keefe DL. Lead concentrates in ovarian follicle compromises pregnancy. J Trace Elem Med Biol. 2006;20(3):205–7.

    Article  PubMed  CAS  Google Scholar 

  13. Arakawa C, Yoshinaga J, Okamura K, Nakai K, Satoh H. Fish consumption and time to pregnancy in Japanese women. Int J Hyg Environ Health. 2006;209(4):337–44.

    Article  PubMed  Google Scholar 

  14. Bloom MS, Buck Louis GM, Sundaram R, Kostyniak PJ, Jain J. Associations between blood metals and fecundity among women residing in New York State. Reprod Toxicol. 2011;31(2):158–63.

    Article  PubMed  CAS  Google Scholar 

  15. Younglai EV, Foster WG, Hughes EG, Trim K, Jarrell JF. Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Arch Environ Contam Toxicol. 2002;43(1):121–6.

    Article  PubMed  CAS  Google Scholar 

  16. Bloom MS. Concerning “Toxic trace metals and human oocytes during in vitro fertilization (IVF)” by M.S. Bloom, P.J. Parsons, A.J. Steuerwald, E.F. Schisterman, R.W. Browne, K. Kim, G.A. Coccaro, N. Narayan, V.Y. Fujimoto [Reprod. Toxicol. 29 (2010) 298–305]. Reprod Toxicol. 2012;33(1):126.

    Article  PubMed  CAS  Google Scholar 

  17. Bloom MS, Parsons PJ, Steuerwald AJ, Schisterman EF, Browne RW, Kim K, Coccaro GA, Conti GC, Narayan N, Fujimoto VY. Toxic trace metals and human oocytes during in vitro fertilization (IVF). Reprod Toxicol. 2010;29(3):298–305.

    Article  PubMed  CAS  Google Scholar 

  18. Bloom MS, Parsons PJ, Kim D, Steuerwald AJ, Vaccari S, Cheng G, et al. Toxic trace metals and embryo quality indicators during in vitro fertilization (IVF). Reprod Toxicol. 2011;31(2):164–70.

    Article  PubMed  CAS  Google Scholar 

  19. Bloom MS, Fujimoto VY, Steuerwald AJ, Cheng G, Browne RW, Parsons PJ. Background exposure to toxic metals in women adversely influences pregnancy during in vitro fertilization (IVF). Reprod Toxicol. 2012;34(3):471–81.

    Article  PubMed  CAS  Google Scholar 

  20. Oktem O, Urman B. Understanding follicle growth in vivo. Hum Reprod. 2010;25(12):2944–54.

    Article  PubMed  Google Scholar 

  21. Fiala J, Hruba D, Crha I, Rezl P, Totusek J. Is environmental cadmium serious hazard to Czech population? Int J Occup Med Environ Health. 2001;14(2):185–8.

    PubMed  CAS  Google Scholar 

  22. Paksy K, Gati I, Naray M, Rajczy K. Lead accumulation in human ovarian follicular fluid, and in vitro effect of lead on progesterone production by cultured human ovarian granulosa cells. J Toxicol Environ Health A. 2001;62(5):359–66.

    Article  PubMed  CAS  Google Scholar 

  23. Silberstein T, Saphier O, Paz-Tal O, Gonzalez L, Keefe DL, Trimarchi JR. Trace element concentrations in follicular fluid of small follicles differ from those in blood serum, and may represent long-term exposure. Fertil Steril. 2009;91(5):1771–4.

    Article  PubMed  CAS  Google Scholar 

  24. Zenzes MT, Krishnan S, Krishnan B, Zhang H, Casper RF. Cadmium accumulation in follicular fluid of women in in vitro fertilization-embryo transfer is higher in smokers. Fertil Steril. 1995;64(3):599–603.

    PubMed  CAS  Google Scholar 

  25. Kruger PC, Bloom MS, Arnason JG, Palmer CD, Fujimoto VY, Parsons PJ. Trace elements in human follicular fluid: development of a sensitive multielement ICP-MS method for use in biomonitoring studies. J Anal At Spectrom. 2012;27(8):1245–53.

    Article  CAS  Google Scholar 

  26. Fujimoto VY, Browne RW, Bloom MS, Sakkas D, Alikani M. Pathogenesis, developmental consequences, and clinical correlations of human embryo fragmentation. Fertil Steril. 2011;95(4):1197–204.

    Article  PubMed  Google Scholar 

  27. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary on ART Terminology, 2009. Hum Reprod. 2009;24(11):2683–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kim K, Fujimoto VY, Parsons PJ, Steuerwald AJ, Browne RW, Bloom MS. Recent cadmium exposure among male partners may affect oocyte fertilization during in vitro fertilization (IVF). J Assist Reprod Genet. 2010;27(8):463–8.

    Article  PubMed  Google Scholar 

  29. Schisterman EF, Vexler A, Whitcomb BW, Liu A. The limitations due to exposure detection limits for regression models. Am J Epidemiol. 2006;163(4):374–83.

    Article  PubMed  Google Scholar 

  30. Palmer CD, Lewis Jr ME, Geraghty CM, Barbosa Jr F, Parsons PJ. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: a comparison between inductively coupled plasma-mass spectrometry and atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc. 2006;61(8):980–90.

    Article  Google Scholar 

  31. Minnich MG, Miller DC, Parsons PJ. Determination of As, Cd, Pb, and Hg in urine using inductively coupled plasma mass spectrometry with the direct injection high efficiency nebulizer. Spectrochim Acta Part B At Spectrosc. 2008;63(3):389–95.

    Article  Google Scholar 

  32. Taioli E, Kinney P, Zhitkovich A, Fulton H, Voitkun V, Cosma G, et al. Application of reliability models to studies of biomarker validation. Environ Health Perspect. 1994;102(3):306–9.

    Article  PubMed  CAS  Google Scholar 

  33. Yelland LN, Salter AB, Ryan P. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data. Am J Epidemiol. 2011;174(8):984–92.

    Article  PubMed  Google Scholar 

  34. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–6.

    Article  PubMed  Google Scholar 

  35. Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  36. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42(1):121–30.

    Article  PubMed  CAS  Google Scholar 

  37. McCullagh P. Regression models for ordinal data. J Roy Stat Soc Ser B (Stat Method). 1980;42(2):109–42.

    Google Scholar 

  38. McKelvey W, Gwynn RC, Jeffery N, Kass D, Thorpe LE, Garg RK, et al. A biomonitoring study of lead, cadmium, and mercury in the blood of New York City adults. Environ Health Perspect. 2007;115(10):1435–41.

    PubMed  CAS  Google Scholar 

  39. Avazeri N, Denys A, Lefavre B. Lead cations affect the control of both meiosis arrest and meiosis resumption of the mouse oocyte in vitro at least via the PKC pathway. Biochimie. 2006;88(11):1823–9.

    Article  PubMed  CAS  Google Scholar 

  40. Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem. 2001;1(6):529–39.

    Article  PubMed  CAS  Google Scholar 

  41. Gupta S, Sekhon L, Kim Y, Agarwal A. The role of oxidative stress and antioxidants in assisted reproduction. Curr Wom Health Rev. 2010;6(3):227–38.

    Article  CAS  Google Scholar 

  42. Thompson J, Bannigan J. Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol. 2008;25(3):304–15.

    Article  PubMed  CAS  Google Scholar 

  43. Kim AM, Bernhardt ML, Kong BY, Ahn RW, Vogt S, Woodruff TK, et al. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol. 2011;6(7):716–23.

    Article  PubMed  CAS  Google Scholar 

  44. Hanna LA, Peters JM, Wiley LM, Clegg MS, Keen CL. Comparative effects of essential and nonessential metals on preimplantation mouse embryo development in vitro. Toxicology. 1997;116(1–3):123–31.

    Article  PubMed  CAS  Google Scholar 

  45. Nandi S, Gupta PSP, Selvaraju S, Roy SC, Ravindra JP. Effects of exposure to heavy metals on viability, maturation, fertilization, and embryonic development of buffalo (Bubalus bubalis) oocytes in vitro. Arch Environ Contam Toxicol. 2010;58(1):194–204.

    Article  PubMed  CAS  Google Scholar 

  46. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19(3):611–5.

    Article  PubMed  CAS  Google Scholar 

  47. Näntö V, Kiilholma P, Nikkanen V, Pakarinen P, Hyörä H, Rosengård U, et al. Trace elements, calcium, potassium and bromine in human follicular fluid. Acta Radiol Suppl. 1991;376:176–8.

    PubMed  Google Scholar 

  48. Zenzes MT, Reed TE. Interovarian differences in levels of cotinine, a major metabolite of nicotine, in women undergoing IVF who are exposed to cigarette smoke. J Assist Reprod Genet. 1998;15(2):99–103.

    Article  PubMed  CAS  Google Scholar 

  49. Bloom MS, Fujimoto VY, Kim K, Browne RW (2012a) Variability of HDL associated biomarkers in human ovarian follicular fluid (Abstract). In: Society for Pediatric and Perinatal Epidemiologic Research (SPER) (ed) 25 years of SPER: A Lifetime of Research Through the Life Course, Minneapolis, MN, June 25–27

Download references

Acknowledgments

We would like to thank Gloria Cheng from the UCSF for assistance in preparing and shipping biologic specimens, Dr. Richard W. Browne at the University at Buffalo for conducting the urine creatinine analysis and Dr. Edward Fitzgerald from the University at Albany for guidance. We extend our gratitude to the study participants whose generosity made this study possible.

Conflict of interest

The authors declare that they have no conflict of interest. This work was supported in part by institutional discretionary research funds available to Drs. Bloom and Fujimoto, and by cooperative agreement no. U38EH000464-01 from the U.S. Centers for Disease Control and Prevention (CDC) to the Wadsworth Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Bloom.

Additional information

Capsule

Substantial within-woman biologic variability for the concentrations of metals measured in follicular fluid specimens necessitates a ‘one follicle-one oocyte/embryo’ approach to studies of background exposures and IVF outcomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, M.S., Kim, K., Kruger, P.C. et al. Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes. J Assist Reprod Genet 29, 1369–1379 (2012). https://doi.org/10.1007/s10815-012-9882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9882-z

Keywords

Navigation