Journal of Assisted Reproduction and Genetics

, Volume 29, Issue 9, pp 979–984 | Cite as

Efficient combined FISH and PRINS technique for detection of DAZ microdeletion in human sperm

  • Hossein Mozdarani
  • Pegah Ghoraeian
Technological Innovations


Intracytoplasmic sperm injection (ICSI) now offers an effective therapeutic option for men with male infertility and is believed to allow transmission of genetically determined infertility to the male offspring. Transmission of DAZ (Deleted in Azoospermia) microdeletion is one of the major concerns for oligo and severe oligozoospermia patients. Screening of the Y chromosome microdeletion in the diagnostic work-up of infertile men is mainly done using polymerase chain reaction (PCR) on blood leukocytes. However, there are evidences showing that presence of DAZ in somatic cells might not be indicative of its presence in germ cell lineage. In this report we are going to describe a combined Primed in situ labeling (PRINS) and fluorescence in situ hybridization (FISH) technique to show the localization of DAZ gene as well as Y chromosome centromere on sperm nuclei. PRINS is a combination of FISH and in situ polymerization provides another approach for in situ chromosomal detection. In the present study the PRINS primers specific for DAZ genes and traditional direct labeled centromere FISH probes for Y and X chromosomes were used in order to simultaneously detect DAZ genes and sex chromosome aneuploidy in sperm samples.


Human sperm Y chromosome DAZ PRINS FISH 



This research was supported by the Research Department of the Faculty of Medical Sciences, Tarbiat Modares University. The authors would like to express their thanks to Mrs Z. Rezaeian for arrangements for sample collection.

Conflict of Interest statement

The authors declare that there are no conflicts of interest.

Supplementary material

10815_2012_9805_MOESM1_ESM.pdf (198 kb)
Esm 1 (PDF 198 kb)


  1. 1.
    Krausz C, Degl’Innocenti S. Y chromosome and male infertility: update, 2006. Front Biosci. 2006;11:3049–61.PubMedCrossRefGoogle Scholar
  2. 2.
    de Kretser DM. Male infertility. Lancet. 1997;349:787–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Krausz C, Murci LQ, McElreavey K. Prognostic value of Y chromosome microdeletion analysis. Hum Reprod. 2000;157:1431–4.CrossRefGoogle Scholar
  4. 4.
    Vogt PH. Human chromosome deletions in Yq11, AZF candidate genes and male infertility, history and update. Mol Hum Reprod. 1998;4:739–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet. 1976;34:119–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Ma K, Inglis JD, Sharkey A, Bickmore WA, Hill RE, Prosser EJ, Speed RM, Thomson EJ, Jobling M, Taylor K, et al. A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell. 1993;75:1287–95.PubMedCrossRefGoogle Scholar
  7. 7.
    Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet. 1995;10:383–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Vogt PH, Edelmann A, Kirsch S, Henegariu O, Hirschmann P, Kiesewetter F, Kohn FM, Schill WB, Farah S, Ramos C, Hartmann M, Hartschuh W, Meschede D, Behre HM, Castel A, Nieschlag E, Weidner W, Grone HJ, Jung A, Engel W, Haidl G. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5:933–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Krausz C, McElreavey K. Y chromosome and male infertility. Frontiers in Bioscience. 1999;4:1–8.CrossRefGoogle Scholar
  10. 10.
    Ferlin A, Arredi B, Speltra E, Cazzadore C, Selice R, et al. Molecular and clinical characterization of Y chromosome microdeletions in infertile men: a 10-year experience in Italy. J Clin Endocrinol Metabol. 2007;92:762–70.CrossRefGoogle Scholar
  11. 11.
    Navarro-Costa P, Gonçalves J, Plancha CE. The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. Hum Reprod Update. 2010;16:525–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Vogt PH, Fernandes S: Polymorphic DAZ gene family in polymorphic structure of AZFc locus: Artwork or functional for human spermatogenesis? Acta Pathologica, Microbiologica et Immunologica Scandinavica 2003; 111 (online version).Google Scholar
  13. 13.
    Meschede D, Lemcke B, Exeler JR, et al. Chromosome abnormalities in 447 couples undergoing intracytoplasmic sperm injection—prevalence, types, sex distribution and reproductive relevance. Hum Reprod. 1998;13:576–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Kostiner DR, Turek PJ, Reijo RA. Male infertility: analysis of the markers and genes on the human Y chromosome. Hum Reprod. 1998;13:3032–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Krausz C, Bussani-Mastellone C, Granchi S, McElreavey K, Scarselli G, Forti G. Screening for microdeletions of Y chromosome genes in patients undergoing intracytoplasmic sperm injection. Hum Reprod. 1999;14:1717–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, Schlegel PN, Howards SS, Nehra A, Damewood MD, et al. Best practice policies for male infertility. Fertil Steril. 2002;5:873–82.CrossRefGoogle Scholar
  17. 17.
    Simoni S, Kamischke A, Nieschlag E. Significance of the molecular diagnosis of Y chromosomal microdeletions in the diagnostic workup of male infertility. Hum Reprod. 1998;13:1764–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Simoni M, Gromoll J, Dworniczak B, Rolf C, Abshagen K, et al. Screening for deletions of the Y chromosome involving the DAZ (Deleted in AZoospermia) gene in azoospermia and severe oligozoospermia. Fertil Steril. 2010;67:1753–6.Google Scholar
  19. 19.
    Zini A, Libman J. Sperm DNA damage: clinical significance in the era of assisted reproduction. Can Med Assoc J. 2006;175:495–500.CrossRefGoogle Scholar
  20. 20.
    Nili HA, Mozdarani H, Aleyasin A. Correlation of sperm DNA damage with protamine deficiency in Iranian subfertile men. Reprod Biomed Online. 2009;18:479–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Aitken RJ, Ryan AL, Curry BJ, Baker MA. Multiple forms of redox activity in populations of human spermatozoa. Mol Hum Reprod. 2003;9:645–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Deepali P, Snjay P, Jyoti S, Sebastian PC, Sher A. Genomic instability of the DYZ1 repeat in patient with Y chromosome anomalies and males exposed to natural background radiation. DNA Res. 2006;13:103–9.CrossRefGoogle Scholar
  23. 23.
    Snjay P, Jyoti S, Sebastian PC, Ahamd J, Sher A. Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation. Mol Hum Reprod. 2006;12:113–21.CrossRefGoogle Scholar
  24. 24.
    Snjay P, Jyoti S, Sebastian PC, Sher A. AZFc somatic microdeletions and copy number polymorohism of the DAZ genes in human males exposed to natural background radiation. Hum Genet. 2007;121:337–46.CrossRefGoogle Scholar
  25. 25.
    Arruda JT, Silva DM, Silva CC, Moura KKVO, da-Cruz AD. Homologous recombination between HERVs causes duplications in the AZFa region of men accidentally exposed to cesium-137 in Goiânia. Genet Mol Res. 2008;7:1063–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Arruda JT. Occurrence of mutations in loci linked to Y chromosome in the offspring born to individuals exposed to ionizing radiation. Genet Mol Res. 2009;8:938.CrossRefGoogle Scholar
  27. 27.
    Moghbeli-Nejad S, Mozdarani H, Behmanesh M, Rezaiean Z, Fallahi P. Genome instability in AZFc region on Y chromosome in leukocytes of fertile and infertile individuals following exposure to gamma radiation. J Assist Reprod Genet. 2012;29:53–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Kent-First MG, Kol S, Muallem A, Ofir R, Manor D, Blazer S, First N, Itskovitz-Eldor J. The incidence and possible relevance of Y-linked microdeletions in babies born after intracytoplasmic sperm injection and their infertile fathers. Mol Hum Reprod. 1996;2:943–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Dada R, Kumar R, Shamsi MB, Kumar R, Kucheria K, Sharma RK, Gupta SK, Gupta NP. Higher frequency of Yq microdeletions in sperm DNA as compared to DNA isolated from blood. Asian J Androl. 2007;9:720–2.PubMedCrossRefGoogle Scholar
  30. 30.
    Sakthivel PJ, Swaminathan M. Y chromosome microdeletions in sperm DNA of infertile patients from Tamil Nadu, south India. Indian J Urol. 2008;24:480–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Le Bourhis C, Siffroi JP, McElreavey K, Dadoune JP. Y chromosome microdeletions and germinal mosaicism in infertile males. Mol Hum Reprod. 2000;6:688–93.PubMedCrossRefGoogle Scholar
  32. 32.
    De Vries JW, Repping S, Oates R, Carson R, Leschot NJ, Van Der Veen F. Absence of deleted in azoospermia (DAZ) genes in spermatozoa of infertile men with somatic DAZ deletions. Fertil Steril. 2001;75:476–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Gao J-L, Nie Y, Ding X-P. Primed in situ labeling for detecting single-copy genes. Genet Mol Res. 2011;10:1884–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Kadandale JS, Wachtel SS, Tunca Y, Martens PR, et al. Deletion of RBM and DAZ in azoospermia: evaluation by PRINS. Am J Med Genet. 2002;107:105–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Tharapel AT, Wachtel SS. PRINS for mapping single-copy genes. Methods Mol Biol. 2006;338:59–67.PubMedGoogle Scholar
  36. 36.
    Pellestor F, Girardet A, Lefort G, Andreo B, et al. PRINS as a method for rapid chromosomal labeling on human spermatozoa. Mol Reprod Dev. 1995;40:333–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Koch JE, Kolvraa S, Petersen KB, Gregersen N, Bolund L. Oligonucleotide-priming methods for the chromosome-specific labeling of alpha satellite DNA in situ. Chromosoma. 1989;98:259–65.PubMedCrossRefGoogle Scholar
  38. 38.
    Pellestor F. What PRINS can do for you. Medical Science. 1998;14:935–8.Google Scholar
  39. 39.
    World Health Organization: WHO laboratory manual for the Examination and processing of human semen. Fifth edition. WHO Press, 2010.Google Scholar
  40. 40.
    Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9:367–76.PubMedGoogle Scholar
  41. 41.
    Pellestor F, Girardet A, Coignet L, Andréo B, Charlieu J-P. Assessment of aneuploidy for chromosomes 8, 9, 13, 16 and 21 in human sperm by using primed in situ labeling technique. Am J Hum Genet. 1996;58:797–802.PubMedGoogle Scholar
  42. 42.
    Pellestor F, Paulasova P, Andréo B, Lefort G, Hamamah S. Multicolor PRINS and multicolor PNA. Cytogenet Genom Res. 2006;114:263–9.CrossRefGoogle Scholar
  43. 43.
    Yan J, Bronsard M, Drouin R. Creating a new color by omission of 3 end blocking step for simultaneous detection of different chromosomes in multi-PRINS technique. Chromosoma. 2001;109:565–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Writzl K, Zorn B, Peterlin B. Copy number of DAZ genes in infertile men. Fertil Steril. 2005;84:1522–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Noordam MJ, Westerveld GH, Hovingh SE, van Daalen SK, Korver CM, van der Veen F, van Pelt AM, Repping S. Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count. Hum Mol Genet. 2011;20:2457–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Barrat CL, Aitken RJ, Björndahl L, Carrell DT, de Boer P, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications–a position report. Hum Reprod. 2010;25:824–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medical Genetics, Faculty of Medical Sciences Tarbiat Modares UniversityTehranIran

Personalised recommendations