Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 29, Issue 8, pp 703–712 | Cite as

Leiomyoma: genetics, assisted reproduction, pregnancy and therapeutic advances

  • Gary Levy
  • Micah J. Hill
  • Stephanie Beall
  • Shvetha M. Zarek
  • James H. Segars
  • William H. Catherino
REVIEW

Abstract

Purpose

Uterine leiomyomas are common, benign, reproductive tract tumors affecting a majority of reproductive aged women. They are associated with gynecologic morbidity and detrimentally affect reproductive potential. The etiology of leiomyomas is poorly understood and their diagnosis prior to treatment with Assisted Reproductive Technologies (ART) represents a management dilemma. The purpose of this paper is to review known genetic and molecular contributions to the etiologies of leiomyomas, describe their impact on ART outcomes and reproductive potential, and review alternative therapies and future directions in management.

Methods

A critical review of the literature pertaining to genetic component of uterine leiomyomas, their impact on ART and pregnancy and leiomyoma therapeutics was performed.

Results

Uterine leiomyomas are characterized by complex molecular mechanisms. Their location and size determines their potential detriment to ART and reproductive function and novel therapeutic modalities are being developed.

Conclusion

The high prevalence of uterine leiomyomas and their potential detrimental influence on ART and reproductive function warrants continued well-designed studies to ascertain their etiology, optimal treatment and novel less morbid therapies.

Keywords

Assisted reproductive technologies Leiomyoma genetics Leiomyoma 

References

  1. 1.
    Bowden W, Skorupski J, Kovanci E, Rajkovic A. Detection of novel copy number variants in uterine leiomyomas using high-resolution SNP arrays. Mol Hum Reprod. 2009;15:563–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Laughlin SK, Schroeder JC, Baird DD. New directions in the epidemiology of uterine fibroids. Semin Reprod Med. 2010;28:204–17.PubMedCrossRefGoogle Scholar
  3. 3.
    Marino JL, Eskenazi B, Warner M, Samuels S, Vercellini P, Gavoni N, et al. Uterine leiomyoma and menstrual cycle characteristics in a population-based cohort study. Hum Reprod. 2004;19:2350–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22:571–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Payson M, Leppert P, Segars J. Epidemiology of myomas. Obstet Gynecol Clin North Am. 2006;33:1–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Kolankaya A, Arici A. Myomas and assisted reproductive technologies: when and how to act? Obstet Gynecol Clin North Am. 2006;33:145–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Ishikawa H, Reierstad S, Demura M, Rademaker AW, Kasai T, Inoue M, et al. High aromatase expression in uterine leiomyoma tissues of African-American women. J Clin Endocrinol Metab. 2009;94:1752–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Somigliana E, Vercellini P, Daguati R, Pasin R, De Giorgi O, Crosignani PG. Fibroids and female reproduction: a critical analysis of the evidence. Hum Reprod Update. 2007;13:465–76.PubMedCrossRefGoogle Scholar
  9. 9.
    Hart R, Khalaf Y, Yeong CT, Seed P, Taylor A, Braude P. A prospective controlled study of the effect of intramural uterine fibroids on the outcome of assisted conception. Hum Reprod. 2001;16:2411–7.PubMedGoogle Scholar
  10. 10.
    Khalaf Y, Ross C, El-Toukhy T, Hart R, Seed P, Braude P. The effect of small intramural uterine fibroids on the cumulative outcome of assisted conception. Hum Reprod. 2006;21:2640–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Oliveira FG, Abdelmassih VG, Diamond MP, Dozortsev D, Melo NR, Abdelmassih R. Impact of subserosal and intramural uterine fibroids that do not distort the endometrial cavity on the outcome of in vitro fertilization-intracytoplasmic sperm injection. Fertil Steril. 2004;81:582–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Klatsky PC, Lane DE, Ryan IP, Fujimoto VY. The effect of fibroids without cavity involvement on ART outcomes independent of ovarian age. Hum Reprod. 2007;22:521–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Horcajadas JA, Goyri E, Higon MA, Martinez-Conejero JA, Gambadauro P, Garcia G, et al. Endometrial receptivity and implantation are not affected by the presence of uterine intramural leiomyomas: a clinical and functional genomics analysis. J Clin Endocrinol Metab. 2008;93:3490–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Pritts EA. Fibroids and infertility: a systematic review of the evidence. Obstet Gynecol Surv. 2001;56:483–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Donnez J, Jadoul P. What are the implications of myomas on fertility? A need for a debate? Hum Reprod. 2002;17:1424–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Benecke C, Kruger TF, Siebert TI, Van der Merwe JP, Steyn DW. Effect of fibroids on fertility in patients undergoing assisted reproduction. A structured literature review. Gynecol Obstet Invest. 2005;59:225–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Pritts EA, Parker WH, Olive DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril. 2009;91:1215–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Sunkara SK, Khairy M, El-Toukhy T, Khalaf Y, Coomarasamy A. The effect of intramural fibroids without uterine cavity involvement on the outcome of IVF treatment: a systematic review and meta-analysis. Hum Reprod. 2010;25:418–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Somigliana E, De Benedictis S, Vercellini P, Nicolosi AE, Benaglia L, Scarduelli C, et al. Fibroids not encroaching the endometrial cavity and IVF success rate: a prospective study. Hum Reprod. 2011;26:834–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206:211. e1–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman's reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab. 1998;83:1875–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Vikhlyaeva EM, Khodzhaeva ZS, Fantschenko ND. Familial predisposition to uterine leiomyomas. Int J Gynaecol Obstet. 1995;51:127–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Al-Hendy A, Salama SA. Ethnic distribution of estrogen receptor-alpha polymorphism is associated with a higher prevalence of uterine leiomyomas in black Americans. Fertil Steril. 2006;86:686–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Wei JJ, Chiriboga L, Arslan AA, Melamed J, Yee H, Mittal K. Ethnic differences in expression of the dysregulated proteins in uterine leiomyomata. Hum Reprod. 2006;21:57–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Amant F, Huys E, Geurts-Moespot A, Lindeque BG, Vergote I, Sweep F, et al. Ethnic variations in uterine leiomyoma biology are not caused by differences in myometrial estrogen receptor alpha levels. J Soc Gynecol Investig. 2003;10:105–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Pan Q, Luo X, Chegini N. Genomic and proteomic profiling I: leiomyomas in African Americans and Caucasians. Reprod Biol Endocrinol. 2007;5:34.PubMedCrossRefGoogle Scholar
  27. 27.
    Gross KL, Morton CC. Genetics and the development of fibroids. Clin Obstet Gynecol. 2001;44:335–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Hodge JC, Cuenco KT, Huyck KL, Somasundaram P, Panhuysen CI, Stewart EA, et al. Uterine leiomyomata and decreased height: a common HMGA2 predisposition allele. Hum Genet. 2009;125:257–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Gattas GJ, Quade BJ, Nowak RA, Morton CC. HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Gene Chromosome Canc. 1999;25:316–22.CrossRefGoogle Scholar
  30. 30.
    Markowski DN, Helmke BM, Belge G, Nimzyk R, Bartnitzke S, Deichert U, et al. HMGA2 and p14Arf: major roles in cellular senescence of fibroids and therapeutic implications. Anticancer Res. 2011;31:753–61.PubMedGoogle Scholar
  31. 31.
    Rein MS, Powell WL, Walters FC, Weremowicz S, Cantor RM, Barbieri RL, et al. Cytogenetic abnormalities in uterine myomas are associated with myoma size. Mol Hum Reprod. 1998;4:83–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Brosens I, Deprest J, Dal Cin P, Van den Berghe H. Clinical significance of cytogenetic abnormalities in uterine myomas. Fertil Steril. 1998;69:232–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Sudarshan S, Pinto PA, Neckers L, Linehan WM. Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer–a distinct form of hereditary kidney cancer. Nat Clin Pract Urol. 2007;4:104–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Uliana V, Marcocci E, Mucciolo M, Meloni I, Izzi C, Manno C, et al. Alport syndrome and leiomyomatosis: the first deletion extending beyond COL4A6 intron 2. Pediatr Nephrol. 2011;26:717–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308:1589–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Cha PC, Takahashi A, Hosono N, Low SK, Kamatani N, Kubo M, et al. A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat Genet. 2011;43:447–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Rogers R, Norian J, Malik M, Christman G, Abu-Asab M, Chen F, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198:474. e1–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Kang YK, Guermah M, Yuan CX, Roeder RG. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc Natl Acad Sci U S A. 2002;99:2642–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol. 2006;195:415–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Kogan EA, Ignatova VE, Rukhadze TN, Kudrina EA, Ishchenko AI. A role of growth factors in development of various histological types of uterine leiomyoma. Arkh Patol. 2005;67:34–8. Article in Russian.PubMedGoogle Scholar
  42. 42.
    Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28:180–203.PubMedCrossRefGoogle Scholar
  43. 43.
    Malik M, Norian J, McCarthy-Keith D, Britten J, Catherino WH. Why leiomyomas are called fibroids: the central role of extracellular matrix in symptomatic women. Semin Reprod Med. 2010;28:169–79.PubMedCrossRefGoogle Scholar
  44. 44.
    Chegini N, Zhao Y, Williams RS, Flanders KC. Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, TGF beta 3, and TGF beta type II receptor messenger ribonucleic acid and protein and contains [125I]TGF beta 1-binding sites. Endocrinology. 1994;135:439–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril. 2002;78:1–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16:1153–64.PubMedCrossRefGoogle Scholar
  47. 47.
    Joseph DS, Malik M, Nurudeen S, Catherino WH. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil Steril. 2010;93:1500–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Laping NJ, Everitt JI, Frazier KS, Burgert M, Portis MJ, Cadacio C, et al. Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res. 2007;13:3087–99.PubMedCrossRefGoogle Scholar
  49. 49.
    Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol (Oxf). 2008;69:462–70.CrossRefGoogle Scholar
  50. 50.
    Asada H, Yamagata Y, Taketani T, Matsuoka A, Tamura H, Hattori N, et al. Potential link between estrogen receptor-alpha gene hypomethylation and uterine fibroid formation. Mol Hum Reprod. 2008;14:539–45.PubMedCrossRefGoogle Scholar
  51. 51.
    Yamagata Y, Maekawa R, Asada H, Taketani T, Tamura I, Tamura H, et al. Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod. 2009;15:259–67.PubMedCrossRefGoogle Scholar
  52. 52.
    Bajekal N, Li TC. Fibroids, infertility and pregnancy wastage. Hum Reprod Update. 2000;6:614–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Gianaroli L, Gordts S, D'Angelo A, Magli MC, Brosens I, Cetera C, et al. Effect of inner myometrium fibroid on reproductive outcome after IVF. Reprod Biomed Online. 2005;10:473–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Eldar-Geva T, Meagher S, Healy DL, MacLachlan V, Breheny S, Wood C. Effect of intramural, subserosal, and submucosal uterine fibroids on the outcome of assisted reproductive technology treatment. Fertil Steril. 1998;70:687–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Farhi J, Ashkenazi J, Feldberg D, Dicker D, Orvieto R, Ben Rafael Z. Effect of uterine leiomyomata on the results of in-vitro fertilization treatment. Hum Reprod. 1995;10:2576–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Klatsky PC, Tran ND, Caughey AB, Fujimoto VY. Fibroids and reproductive outcomes: a systematic literature review from conception to delivery. Am J Obstet Gynecol. 2008;198:357–66.PubMedCrossRefGoogle Scholar
  57. 57.
    Cook H, Ezzati M, Segars JH, McCarthy K. The impact of uterine leiomyomas on reproductive outcomes. Minerva Ginecol. 2010;62:225–36.PubMedGoogle Scholar
  58. 58.
    Bosteels J, Weyers S, Puttemans P, Panayotidis C, Van Herendael B, Gomel V, et al. The effectiveness of hysteroscopy in improving pregnancy rates in subfertile women without other gynaecological symptoms: a systematic review. Hum Reprod Update. 2010;16:1–11.PubMedCrossRefGoogle Scholar
  59. 59.
    Stovall DW, Parrish SB, Van Voorhis BJ, Hahn SJ, Sparks AE, Syrop CH. Uterine leiomyomas reduce the efficacy of assisted reproduction cycles: results of a matched follow-up study. Hum Reprod. 1998;13:192–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Healy DL. Impact of uterine fibroids on ART outcome. Environ Health Perspect. 2000;108 Suppl 5:845–7.PubMedGoogle Scholar
  61. 61.
    Laughlin SK, Baird DD, Savitz DA, Herring AH, Hartmann KE. Prevalence of uterine leiomyomas in the first trimester of pregnancy: an ultrasound-screening study. Obstet Gynecol. 2009;113:630–5.PubMedGoogle Scholar
  62. 62.
    Strobelt N, Ghidini A, Cavallone M, Pensabene I, Ceruti P, Vergani P. Natural history of uterine leiomyomas in pregnancy. J Ultrasound Med. 1994;13:399–401.PubMedGoogle Scholar
  63. 63.
    Rice JP, Kay HH, Mahony BS. The clinical significance of uterine leiomyomas in pregnancy. Am J Obstet Gynecol. 1989;160:1212–6.PubMedGoogle Scholar
  64. 64.
    Buttram Jr VC, Reiter RC. Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril. 1981;36:433–45.PubMedGoogle Scholar
  65. 65.
    Lumbiganon P, Rugpao S, Phandhu-fung S, Laopaiboon M, Vudhikamraksa N, Werawatakul Y. Protective effect of depot-medroxyprogesterone acetate on surgically treated uterine leiomyomas: a multicentre case–control study. Br J Obstet Gynaecol. 1996;103:909–14.PubMedCrossRefGoogle Scholar
  66. 66.
    Sheiner E, Bashiri A, Levy A, Hershkovitz R, Katz M, Mazor M. Obstetric characteristics and perinatal outcome of pregnancies with uterine leiomyomas. J Reprod Med. 2004;49:182–6.PubMedGoogle Scholar
  67. 67.
    Saravelos SH, Yan J, Rehmani H, Li TC. The prevalence and impact of fibroids and their treatment on the outcome of pregnancy in women with recurrent miscarriage. Hum Reprod. 2011;26:3274–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Benson CB, Chow JS, Chang-Lee W, Hill 3rd JA, Doubilet PM. Outcome of pregnancies in women with uterine leiomyomas identified by sonography in the first trimester. J Clin Ultrasound. 2001;29:261–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Li TC, Mortimer R, Cooke ID. Myomectomy: a retrospective study to examine reproductive performance before and after surgery. Hum Reprod. 1999;14:1735–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Vercellini P, Maddalena S, De Giorgi O, Pesole A, Ferrari L, Crosignani PG. Determinants of reproductive outcome after abdominal myomectomy for infertility. Fertil Steril. 1999;72:109–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Marchionni M, Fambrini M, Zambelli V, Scarselli G, Susini T. Reproductive performance before and after abdominal myomectomy: a retrospective analysis. Fertil Steril. 2004;82:154–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Campo S, Campo V, Gambadauro P. Reproductive outcome before and after laparoscopic or abdominal myomectomy for subserous or intramural myomas. Eur J Obstet Gynecol Reprod Biol. 2003;110:215–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Vergani P, Locatelli A, Ghidini A, Andreani M, Sala F, Pezzullo JC. Large uterine leiomyomata and risk of cesarean delivery. Obstet Gynecol. 2007;109:410–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Coronado GD, Marshall LM, Schwartz SM. Complications in pregnancy, labor, and delivery with uterine leiomyomas: a population-based study. Obstet Gynecol. 2000;95:764–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Roberts WE, Fulp KS, Morrison JC, Martin Jr JN. The impact of leiomyomas on pregnancy. Aust N Z J Obstet Gynaecol. 1999;39:43–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Vergani P, Ghidini A, Strobelt N, Roncaglia N, Locatelli A, Lapinski RH, et al. Do uterine leiomyomas influence pregnancy outcome? Am J Perinatol. 1994;11:356–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Davis JL, Ray-Mazumder S, Hobel CJ, Baley K, Sassoon D. Uterine leiomyomas in pregnancy: a prospective study. Obstet Gynecol. 1990;75:41–4.PubMedGoogle Scholar
  78. 78.
    Qidwai GI, Caughey AB, Jacoby AF. Obstetric outcomes in women with sonographically identified uterine leiomyomata. Obstet Gynecol. 2006;107:376–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Shavell VI, Thakur M, Sawant A, Kruger ML, Jones TB, Singh M, et al. Adverse obstetric outcomes associated with sonographically identified large uterine fibroids. Fertil Steril. 2012;97:107–10.PubMedCrossRefGoogle Scholar
  80. 80.
    Stout MJ, Odibo AO, Graseck AS, Macones GA, Crane JP, Cahill AG. Leiomyomas at routine second-trimester ultrasound examination and adverse obstetric outcomes. Obstet Gynecol. 2010;116:1056–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Seracchioli R, Rossi S, Govoni F, Rossi E, Venturoli S, Bulletti C, et al. Fertility and obstetric outcome after laparoscopic myomectomy of large myomata: a randomized comparison with abdominal myomectomy. Hum Reprod. 2000;15:2663–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Campo S, Garcea N. Laparoscopic myomectomy in premenopausal women with and without preoperative treatment using gonadotrophin-releasing hormone analogues. Hum Reprod. 1999;14:44–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Miller CE, Johnston M, Rundell M. Laparoscopic myomectomy in the infertile woman. J Am Assoc Gynecol Laparosc. 1996;3:525–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Abramovici H, Dirnfeld M, Auslander R, Bornstein J, Blumenfeld Z, Sorokin Y. Pregnancies following treatment by GnRH-a (Decapeptyl) and myomectomy in infertile women with uterine leiomyomata. Int J Fertil Menopausal Stud. 1994;39:150–5.PubMedGoogle Scholar
  85. 85.
    Surrey ES, Minjarez DA, Stevens JM, Schoolcraft WB. Effect of myomectomy on the outcome of assisted reproductive technologies. Fertil Steril. 2005;83:1473–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Bulletti C, Dez D, Levi Setti P, Cicinelli E, Polli V, Stefanetti M. Myomas, pregnancy outcome, and in vitro fertilization. Ann N Y Acad Sci. 2004;1034:84–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Narayan R, Rajat, Goswamy K. Treatment of submucous fibroids, and outcome of assisted conception. J Am Assoc Gynecol Laparosc. 1994;1:307–11.PubMedCrossRefGoogle Scholar
  88. 88.
    Varasteh NN, Neuwirth RS, Levin B, Keltz MD. Pregnancy rates after hysteroscopic polypectomy and myomectomy in infertile women. Obstet Gynecol. 1999;94:168–71.PubMedCrossRefGoogle Scholar
  89. 89.
    Goldberg J, Pereira L. Pregnancy outcomes following treatment for fibroids: uterine fibroid embolization versus laparoscopic myomectomy. Curr Opin Obstet Gynecol. 2006;18:402–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Gupta JK, Sinha AS, Lumsden MA, Hickey M. Uterine artery embolization for symptomatic uterine fibroids. Cochrane Database Syst Rev 2006;1:CD005073.Google Scholar
  91. 91.
    Edwards RD, Moss JG, Lumsden MA, Wu O, Murray LS, Twaddle S, et al. Uterine-artery embolization versus surgery for symptomatic uterine fibroids. N Engl J Med. 2007;356:360–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Moss JG, Cooper KG, Khaund A, Murray LS, Murray GD, Wu O, et al. Randomised comparison of uterine artery embolisation (UAE) with surgical treatment in patients with symptomatic uterine fibroids (REST trial): 5-year results. BJOG. 2011;118:936–44.PubMedCrossRefGoogle Scholar
  93. 93.
    American Society of Reproductive Medicine (ASRM). Myomas and reproductive function. Fertil Steril. 2008;90:S125–S30.Google Scholar
  94. 94.
    Goldberg J. Pregnancy after uterine artery embolization for leiomyomata: the Ontario Multicenter Trial. Obstet Gynecol. 2005;106:195–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Firouznia K, Ghanaati H, Sanaati M, Jalali AH, Shakiba M. Pregnancy after uterine artery embolization for symptomatic fibroids: a series of 15 pregnancies. Am J Roentgenol. 2009;192:1588–92.CrossRefGoogle Scholar
  96. 96.
    Homer H, Saridogan E. Uterine artery embolization for fibroids is associated with an increased risk of miscarriage. Fertil Steril. 2010;94:324–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Holub Z, Mara M, Kuzel D, Jabor A, Maskova J, Eim J. Pregnancy outcomes after uterine artery occlusion: prospective multicentric study. Fertil Steril. 2008;90:1886–91.PubMedCrossRefGoogle Scholar
  98. 98.
    Goldberg J, Pereira L, Berghella V, Diamond J, Darai E, Seinera P, et al. Pregnancy outcomes after treatment for fibromyomata: uterine artery embolization versus laparoscopic myomectomy. Am J Obstet Gynecol. 2004;191:18–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Tropeano G, Litwicka K, Di Stasi C, Romano D, Mancuso S. Permanent amenorrhea associated with endometrial atrophy after uterine artery embolization for symptomatic uterine fibroids. Fertil Steril. 2003;79:132–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Mara M, Maskova J, Fucikova Z, Kuzel D, Belsan T, Sosna O. Midterm clinical and first reproductive results of a randomized controlled trial comparing uterine fibroid embolization and myomectomy. Cardiovasc Interv Radiol. 2008;31:73–85.CrossRefGoogle Scholar
  101. 101.
    Hindley J, Gedroyc WM, Regan L, Stewart E, Tempany C, Hynnen K, et al. MRI guidance of focused ultrasound therapy of uterine fibroids: early results. Am J Roentgenol. 2004;183:1713–9.Google Scholar
  102. 102.
    Kim HS, Baik JH, Pham LD, Jacobs MA. MR-guided high-intensity focused ultrasound treatment for symptomatic uterine leiomyomata: long-term outcomes. Acad Radiol. 2011;18:970–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Rabinovici J, David M, Fukunishi H, Morita Y, Gostout BS, Stewart EA, et al. Pregnancy outcome after magnetic resonance-guided focused ultrasound surgery (MRgFUS) for conservative treatment of uterine fibroids. Fertil Steril. 2010;93:199–209.PubMedCrossRefGoogle Scholar
  104. 104.
    Tropeano G, Amoroso S, Scambia G. Non-surgical management of uterine fibroids. Hum Reprod Update. 2008;14:259–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Lethaby A, Vollenhoven B, Sowter M. Pre-operative GnRH analogue therapy before hysterectomy or myomectomy for uterine fibroids. Cochrane Database Syst Rev 2001;2:CD000547.Google Scholar
  106. 106.
    Feng C, Meldrum S, Fiscella K. Improved quality of life is partly explained by fewer symptoms after treatment of fibroids with mifepristone. Int J Gynaecol Obstet. 2010;109:121–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Engman M, Granberg S, Williams AR, Meng CX, Lalitkumar PG, Gemzell-Danielsson K. Mifepristone for treatment of uterine leiomyoma. A prospective randomized placebo controlled trial. Hum Reprod. 2009;24:1870–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Bagaria M, Suneja A, Vaid NB, Guleria K, Mishra K. Low-dose mifepristone in treatment of uterine leiomyoma: a randomised double-blind placebo-controlled clinical trial. Aust N Z J Obstet Gynaecol. 2009;49:77–83.PubMedCrossRefGoogle Scholar
  109. 109.
    Chwalisz K, Larsen L, Mattia-Goldberg C, Edmonds A, Elger W, Winkel CA. A randomized, controlled trial of asoprisnil, a novel selective progesterone receptor modulator, in women with uterine leiomyomata. Fertil Steril. 2007;87:1399–412.PubMedCrossRefGoogle Scholar
  110. 110.
    Esteve JL, Acosta R, Perez Y, Campos R, Hernandez AV, Texido CS. Treatment of uterine myoma with 5 or 10 mg mifepristone daily during 6 months, post-treatment evolution over 12 months: double-blind randomised clinical trial. Eur J Obstet Gynecol Reprod Biol. 2012;161:202–8.Google Scholar
  111. 111.
    Levens ED, Potlog-Nahari C, Armstrong AY, Wesley R, Premkumar A, Blithe DL, et al. CDB-2914 for uterine leiomyomata treatment: a randomized controlled trial. Obstet Gynecol. 2008;111:1129–36.PubMedCrossRefGoogle Scholar
  112. 112.
    Nieman LK, Blocker W, Nansel T, Mahoney S, Reynolds J, Blithe D, et al. Efficacy and tolerability of CDB-2914 treatment for symptomatic uterine fibroids: a randomized, double-blind, placebo-controlled, phase IIb study. Fertil Steril. 2011;95:767–72. e1–2.PubMedCrossRefGoogle Scholar
  113. 113.
    Donnez J, Tomaszewski J, Vazquez F, Bouchard P, Lemieszczuk B, Baro F, et al. Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med. 2012;366:421–32.PubMedCrossRefGoogle Scholar
  114. 114.
    Donnez J, Tatarchuk TF, Bouchard P, Puscasiu L, Zakharenko NF, Ivanova T, et al. Ulipristal acetate versus placebo for fibroid treatment before surgery. N Engl J Med. 2012;366:409–20.PubMedCrossRefGoogle Scholar
  115. 115.
    Kettel LM, Murphy AA, Morales AJ, Ulmann A, Baulieu EE, Yen SS. Treatment of endometriosis with the antiprogesterone mifepristone (RU486). Fertil Steril. 1996;65:23–8.PubMedGoogle Scholar
  116. 116.
    Chabbert-Buffet N, Pintiaux-Kairis A, Bouchard P. Effects of the progesterone receptor modulator VA2914 in a continuous low dose on the hypothalamic-pituitary-ovarian axis and endometrium in normal women: a prospective, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2007;92:3582–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, et al. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006;24:727–33.PubMedCrossRefGoogle Scholar
  118. 118.
    Eisinger SH, Bonfiglio T, Fiscella K, Meldrum S, Guzick DS. Twelve-month safety and efficacy of low-dose mifepristone for uterine myomas. J Minim Invasive Gynecol. 2005;12:227–33.PubMedCrossRefGoogle Scholar
  119. 119.
    Mutter GL, Bergeron C, Deligdisch L, Ferenczy A, Glant M, Merino M, et al. The spectrum of endometrial pathology induced by progesterone receptor modulators. Mod Pathol. 2008;21:591–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Ioffe OB, Zaino RJ, Mutter GL. Endometrial changes from short-term therapy with CDB-4124, a selective progesterone receptor modulator. Mod Pathol. 2009;22:450–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Spitz IM. Clinical utility of progesterone receptor modulators and their effect on the endometrium. Curr Opin Obstet Gynecol. 2009;21:318–24.PubMedCrossRefGoogle Scholar
  122. 122.
    Eisinger SH, Fiscella J, Bonfiglio T, Meldrum S, Fiscella K. Open-label study of ultra low-dose mifepristone for the treatment of uterine leiomyomata. Eur J Obstet Gynecol Reprod Biol. 2009;146:215–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Parsanezhad ME, Azmoon M, Alborzi S, Rajaeefard A, Zarei A, Kazerooni T, et al. A randomized, controlled clinical trial comparing the effects of aromatase inhibitor (letrozole) and gonadotropin-releasing hormone agonist (triptorelin) on uterine leiomyoma volume and hormonal status. Fertil Steril. 2010;93:192–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Catherino WH, Malik M. Uterine leiomyomas express a molecular pattern that lowers retinoic acid exposure. Fertil Steril. 2007;87:1388–98.PubMedCrossRefGoogle Scholar
  125. 125.
    Zaitseva M, Vollenhoven BJ, Rogers PA. Retinoic acid pathway genes show significantly altered expression in uterine fibroids when compared with normal myometrium. Mol Hum Reprod. 2007;13:577–85.PubMedCrossRefGoogle Scholar
  126. 126.
    Ben-Sasson H, Ben-Meir A, Shushan A, Karra L, Rojansky N, Klein BY, et al. All-trans-retinoic acid mediates changes in PI3K and retinoic acid signaling proteins of leiomyomas. Fertil Steril. 2011;95:2080–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Malik M, Mendoza M, Payson M, Catherino WH. Curcumin, a nutritional supplement with antineoplastic activity, enhances leiomyoma cell apoptosis and decreases fibronectin expression. Fertil Steril. 2009;91:2177–84.PubMedCrossRefGoogle Scholar
  128. 128.
    Zhang D, Al-Hendy M, Richard-Davis G, Montgomery-Rice V, Sharan C, Rajaratnam V, et al. Green tea extract inhibits proliferation of uterine leiomyoma cells in vitro and in nude mice. Am J Obstet Gynecol. 2010;202:289.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • Gary Levy
    • 1
    • 2
  • Micah J. Hill
    • 1
  • Stephanie Beall
    • 1
  • Shvetha M. Zarek
    • 1
  • James H. Segars
    • 1
  • William H. Catherino
    • 2
  1. 1.Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institute of HealthBethesdaUSA
  2. 2.Department of Obstetrics and GynecologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations