Skip to main content

Advertisement

Log in

Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice

  • Epigenetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to evaluate DNA methylation and the expression of DNA methyltransferases (Dnmt1, Dnmt3a, Dnmt3b and Dnmt3L) in metaphaseII (MII) oocytes and the DNA methylation of pre-implantation embryos during mouse aging to address whether such aging-related changes are associated with decreased reproductive potential in aged mice.

Methods

Oocytes (MII) from 6 to 8 weeks old female mice are referred to as the ‘young group’; oocytes from the same group that were maintained until 35–40 weeks old are referred to as the ‘old group.’ The oocytes were fertilized both in vitro and in vivo to obtain embryos. The DNA methylation levels in the oocytes (MII) and pre-implantation embryos were assessed using fluorescence staining. The expression levels of the Dnmt genes in the oocytes (MII) were assessed using Western blotting.

Results

The DNA methylation levels in the oocytes and pre-implantation embryos (in vivo and in vitro) decreased significantly during the aging of the mice. The expression levels of all of the examined Dnmt proteins in the old group were lower than young group. Both the cleavage and blastocyst rate were significantly lower in the oocytes of the older mice (69.9 % vs. 80.9 %, P < 0.05; 33.9 % vs. 56.4 %, P < 0.05). The pregnancy rate of the old mice was lower than that of the young mice (46.7 % vs. 100 %, P < 0.05). The stillbirth and fetal malformation rate was significantly higher in the old group than in the young group (17.2 % vs. 2.9 %, P < 0.05).

Conclusions

The decreased expression of Dnmt1, Dnmt3a, Dnmt3b and Dnmt3L in oocytes (MII) and the change of genome-wide DNA methylation in oocytes and pre-implantation embryos due to aging may be related to lower reproductive potential in old female mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Armstrong DT. Effects of maternal age on oocyte developmental competence. Theriogenology. 2001;55(6):1303–22.

    Article  PubMed  CAS  Google Scholar 

  2. Klein J, Sauer MV. Assessing fertility in women of advanced reproductive age. Am J Obstet Gynecol. 2001;185(3):758–70.

    Article  PubMed  CAS  Google Scholar 

  3. Assisted reproductive technology in the United States: 1997 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril. 2000;74(4):641–653; discussion 653–644.

    Google Scholar 

  4. van Kooij RJ, Looman CW, Habbema JD, Dorland M, te Velde ER. Age-dependent decrease in embryo implantation rate after in vitro fertilization. Fertil Steril. 1996;66(5):769–75.

    PubMed  Google Scholar 

  5. Plachot M, Veiga A, Montagut J, et al. Are clinical and biological IVF parameters correlated with chromosomal disorders in early life: a multicentric study. Hum Reprod. 1988;3(5):627–35.

    PubMed  CAS  Google Scholar 

  6. Hamatani T, Falco G, Carter MG, et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet. 2004;13(19):2263–78.

    Article  PubMed  CAS  Google Scholar 

  7. Wise PM, Smith MJ, Dubal DB, et al. Neuroendocrine modulation and repercussions of female reproductive aging. Recent Prog Horm Res. 2002;57:235–56.

    Article  PubMed  CAS  Google Scholar 

  8. Yeh J, Kim BS, Peresie J. Ovarian vascular endothelial growth factor and vascular endothelial growth factor receptor patterns in reproductive aging. Fertil Steril. 2008;89(5 Suppl):1546–56.

    Article  PubMed  CAS  Google Scholar 

  9. Thorneycroft IH, Soderwall AL. The nature of the litter size loss in senescent hamsters. Anat Rec. 1969;165(3):343–8.

    Article  PubMed  CAS  Google Scholar 

  10. Finn CA. Reproductive ageing and the menopause. Int J Dev Biol. 2001;45(3):613–7.

    PubMed  CAS  Google Scholar 

  11. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Article  Google Scholar 

  12. Ito M, Muraki M, Takahashi Y, et al. Glutathione S-transferase theta 1 expressed in granulosa cells as a biomarker for oocyte quality in age-related infertility. Fertil Steril. 2008;90(4):1026–35.

    Article  PubMed  CAS  Google Scholar 

  13. Pan H, Ma P, Zhu W, Schultz RM. Age-associated increase in aneuploidy and changes in gene expression in mouse eggs. Dev Biol. 2008;316(2):397–407.

    Article  PubMed  CAS  Google Scholar 

  14. Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol. 2010;20(17):1522–8.

    Article  PubMed  CAS  Google Scholar 

  15. Antinori S, Versaci C, Gholami GH, Panci C, Caffa B. Oocyte donation in menopausal women. Hum Reprod. 1993;8(9):1487–90.

    PubMed  CAS  Google Scholar 

  16. Sauer MV, Paulson RJ, Lobo RA. Reversing the natural decline in human fertility. An extended clinical trial of oocyte donation to women of advanced reproductive age. JAMA. 1992;268(10):1275–9.

    Article  PubMed  CAS  Google Scholar 

  17. Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet. 2007;23(8):413–8.

    Article  PubMed  CAS  Google Scholar 

  18. Fraga MF, Agrelo R, Esteller M. Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci. 2007;1100:60–74.

    Article  PubMed  CAS  Google Scholar 

  19. Munoz-Najar U, Sedivy JM. Epigenetic control of aging. Antioxid Redox Signal. 2011;14(2):241–59.

    Article  PubMed  CAS  Google Scholar 

  20. Trasler JM. Gamete imprinting: setting epigenetic patterns for the next generation. Reprod Fertil Dev. 2006;18(1–2):63–9.

    Article  PubMed  Google Scholar 

  21. Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. ChemBioChem. 2010;12(2):206–22.

    Article  PubMed  Google Scholar 

  23. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93.

    Article  PubMed  CAS  Google Scholar 

  24. Golbus J, Palella TD, Richardson BC. Quantitative changes in T cell DNA methylation occur during differentiation and ageing. Eur J Immunol. 1990;20(8):1869–72.

    Article  PubMed  CAS  Google Scholar 

  25. Wilson VL, Smith RA, Ma S, Cutler RG. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987;262(21):9948–51.

    PubMed  CAS  Google Scholar 

  26. Vanyushin BF, Nemirovsky LE, Klimenko VV, Vasiliev VK, Belozersky AN. The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia. 1973;19(3):138–52.

    Article  PubMed  CAS  Google Scholar 

  27. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7(4):536–40.

    Article  PubMed  CAS  Google Scholar 

  28. Eads CA, Lord RV, Wickramasinghe K, et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 2001;61(8):3410–8.

    PubMed  CAS  Google Scholar 

  29. Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS. Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol. 2003;163(4):1551–6.

    Article  PubMed  CAS  Google Scholar 

  30. Shen L, Ahuja N, Shen Y, et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst. 2002;94(10):755–61.

    Article  PubMed  CAS  Google Scholar 

  31. Tsuchiya T, Tamura G, Sato K, et al. Distinct methylation patterns of two APC gene promoters in normal and cancerous gastric epithelia. Oncogene. 2000;19(32):3642–6.

    Article  PubMed  CAS  Google Scholar 

  32. Waki T, Tamura G, Sato M, Motoyama T. Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene. 2003;22(26):4128–33.

    Article  PubMed  CAS  Google Scholar 

  33. Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord. 2007;8(2):173–82.

    Article  PubMed  Google Scholar 

  34. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14:R47–58.

    Article  PubMed  CAS  Google Scholar 

  35. Worrad DM, Ram PT, Schultz RM. Regulation of gene expression in the mouse oocyte and early preimplantation embryo: developmental changes in Sp1 and TATA box-binding protein, TBP. Development. 1994;120(8):2347–57.

    PubMed  CAS  Google Scholar 

  36. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol. 1997;181(2):296–307.

    Article  PubMed  CAS  Google Scholar 

  37. Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity. 1998;9(6):765–75.

    Article  PubMed  CAS  Google Scholar 

  38. Richardson B. Impact of aging on DNA methylation. Ageing Res Rev. 2003;2(3):245–61.

    Article  PubMed  CAS  Google Scholar 

  39. Feinberg AP. DNA methylation, genomic imprinting and cancer. Curr Top Microbiol Immunol. 2000;249:87–99.

    Article  PubMed  CAS  Google Scholar 

  40. Feinberg AP, Cui H, Ohlsson R. DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol. 2002;12(5):389–98.

    Article  PubMed  CAS  Google Scholar 

  41. Wilson VL, Jones PA. DNA methylation decreases in aging but not in immortal cells. Science. 1983;220(4601):1055–7.

    Article  PubMed  CAS  Google Scholar 

  42. Cedar H, Razin A. DNA methylation and development. Biochim Biophys Acta. 1990;1049(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  43. Dahl C, Guldberg P. DNA methylation analysis techniques. Biogerontology. 2003;4(4):233–50.

    Article  PubMed  CAS  Google Scholar 

  44. Eden S, Hashimshony T, Keshet I, Cedar H, Thorne AW. DNA methylation models histone acetylation. Nature. 1998;394(6696):842.

    Article  PubMed  CAS  Google Scholar 

  45. Suo L, Meng QG, Pei Y, et al. Changes in acetylation on lysine 12 of histone H4 (acH4K12) of murine oocytes during maternal aging may affect fertilization and subsequent embryo development. Fertil Steril. 2010;93(3):945–51.

    Article  PubMed  CAS  Google Scholar 

  46. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Canc Cell. 2003;3(1):89–95.

    Article  CAS  Google Scholar 

  47. Lehnertz B, Ueda Y, Derijck AA, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003;13(14):1192–200.

    Article  PubMed  CAS  Google Scholar 

  48. Strunnikova M, Schagdarsurengin U, Kehlen A, Garbe JC, Stampfer MR, Dammann R. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol. 2005;25(10):3923–33.

    Article  PubMed  CAS  Google Scholar 

  49. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001;414(6861):277–83.

    Article  PubMed  CAS  Google Scholar 

  50. Manosalva I, Gonzalez A. Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology. 2010;74(9):1539–47.

    Article  PubMed  CAS  Google Scholar 

  51. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69(6):915–26.

    Article  PubMed  CAS  Google Scholar 

  52. Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129(8):1983–93.

    PubMed  CAS  Google Scholar 

  53. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  PubMed  CAS  Google Scholar 

  54. Feil R, Khosla S. Genomic imprinting in mammals: an interplay between chromatin and DNA methylation? Trends Genet. 1999;15(11):431–5.

    Article  PubMed  CAS  Google Scholar 

  55. Lopes FL, Fortier AL, Darricarrere N, Chan D, Arnold DR, Trasler JM. Reproductive and epigenetic outcomes associated with aging mouse oocytes. Hum Mol Genet. 2009;18(11):2032–44.

    Article  PubMed  CAS  Google Scholar 

  56. Santos F, Dean W. Using immunofluorescence to observe methylation changes in mammalian preimplantation embryos. Meth Mol Biol. 2006;325:129–37.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation Project of China (No. 30972102); China Agricultural University Graduate Scientific Research and Innovation Special Project (No. kycx09027). We thank Professor William Hohenboken, Professor Tiantian Zhang and Dr. QingGang Meng for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-en Zhu.

Additional information

Capsule

Aging caused a significant decrease in the expression of four key Dnmts and genome-wide DNA methylation in oocytes and pre-implantation embryos.

Ming-xing Yue and Xiang-wei Fu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Mx., Fu, Xw., Zhou, Gb. et al. Abnormal DNA methylation in oocytes could be associated with a decrease in reproductive potential in old mice. J Assist Reprod Genet 29, 643–650 (2012). https://doi.org/10.1007/s10815-012-9780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9780-4

Keywords

Navigation