Skip to main content

Advertisement

Log in

Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations

  • Stem Cell Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of serum supplementing on short-term culture, fate determination and gene expression of goat spermatogonial stem cells (SSCs).

Methods

Crude testicular cells were plated over Datura-Stramonium Agglutinin (DSA) for 1 h, and non-adhering cells were cultured in the presence of different serum concentrations (1, 5, 10, and 15%) for 7 days in a highly enriched medium initially developed in mice. Colonies developed in each group were used for the assessment of morphology, immunocytochemistry, and gene expression.

Results

Brief incubation of testicular cells with DSA resulted in a significant increase in the number of cells that expressed the germ cell marker (VASA). The expression of THY1, a specific marker of undifferentiated spermatogonia, was significantly higher in colonies developed in the presence of 1% rather than 5, 10 and 15% serum.

Conclusion

Goat SSCs could proliferate and maintain in SSC culture media for 1 week at serum concentrations as low as 1%, while higher concentrations had detrimental effects on SSC culture/expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tegelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290:193–200.

    Article  PubMed  CAS  Google Scholar 

  2. Meistrich ML, van Beek MEAB. Spermatogonial stem cells. In: Desjardins CC, Ewing LL, editors. Cell and molecular biology of the testis. New York: Oxford University Press; 1993. p. 266–95.

    Google Scholar 

  3. Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL. Culture of mouse spermatogonial stem cells. Tissue Cell. 1998;30:389–97.

    Article  PubMed  CAS  Google Scholar 

  4. Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A, Shinohara T. Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod. 2011;84:97–105.

    Article  PubMed  CAS  Google Scholar 

  5. Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365:1663–78.

    Article  PubMed  CAS  Google Scholar 

  6. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69:612–6.

    Article  PubMed  CAS  Google Scholar 

  7. Lee J, Kanatsu-Shinohara M, Ogonuki N, Miki H, Inoue K, Morimoto T, et al. Heritable imprinting defect caused by epigenetic abnormalities in mouse spermatogonial stem cells. Biol Reprod. 2009;80:518–27.

    Article  PubMed  CAS  Google Scholar 

  8. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, et al. Long-term culture of male germline stem cells from hamster testes. Biol Reprod. 2008;78:611–7.

    Article  PubMed  CAS  Google Scholar 

  9. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2004;23(101):16489–94.

    Article  Google Scholar 

  10. Meade HM, Echelard Y, Ziomek CA, Young MW, Harvey M, Cole ES, et al. Expression of recombinant proteins in the milk of transgenic animals. In: Fernandez JM, Hoeffler JP, editors. Gene expression systems: using nature for the art of expression. San Diego: Academic Press; 1998. p. 399–427.

    Google Scholar 

  11. Honaramooz A, Behboodi E, Hausler CL, Blash S, Mengee SO, Dobrinski I. Germ cell transplantation in goats. Mol Reprod Dev. 2003;64:422–8.

    Article  PubMed  CAS  Google Scholar 

  12. Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, et al. Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod. 2003;69:1260–4.

    Article  PubMed  CAS  Google Scholar 

  13. Honaramooz A, Behboodi E, Hausler CL, Blash S, Ayres S, Azuma C, et al. Depletion of endogenous germ cells in male pigs and goats in preparation for germ cell transplantation. J Androl. 2005;26:698–705.

    Article  PubMed  Google Scholar 

  14. Wu Z, Falciatori I, Molyneux LA, Richardson TE, Chapman KM, Hamra FK. Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol Reprod. 2009;81:77–86.

    Article  PubMed  CAS  Google Scholar 

  15. Freshney R. Culture of animal cells: a manual of basic technique. New York: Alan R. Liss, Inc; 1987. p. 117.

    Google Scholar 

  16. Scarpino S, Morena AR, Petersen C, Fröysa B, Söder O, Boitani C. A rapid method of Sertoli cell isolation by DSA lectin, allowing mitotic analyses. Mol Cell Endocrinol. 1998;25(146):121–7.

    Article  Google Scholar 

  17. Kanatsu M, Nishikawa SI. In vitro analysis of epiblast tissue potency for hematopoietic cell differentiation. Development. 1996;122:823–30.

    PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  19. Herrid M, Davey RJ, Hutton K, Colditz IG, Hill JR. A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod Fertil Dev. 2009;21:393–9.

    Article  PubMed  CAS  Google Scholar 

  20. Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ, de Rooij DG. Propagation of bovine spermatogonial stem cells in vitro. Reproduction. 2008;136:543–57.

    Article  PubMed  CAS  Google Scholar 

  21. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod. 2005;72:985–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded by a grant from the Royan Institute (P83P88213). Authors declare that there is no conflict of interest in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Baharvand or Mohammad H. Nasr-Esfahani.

Additional information

Summary Serum concentration adversely affects in-vitro culture of goat spermatogonial stem cells.

Capsule The result of this study showed maintenance and proliferation of goat SSC are adversely affected by high serum concentration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahadorani, M., Hosseini, S.M., Abedi, P. et al. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations. J Assist Reprod Genet 29, 39–46 (2012). https://doi.org/10.1007/s10815-011-9687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9687-5

Keywords

Navigation