Advertisement

Journal of Assisted Reproduction and Genetics

, Volume 28, Issue 12, pp 1183–1192 | Cite as

Maturation outcomes are improved following Cryoleaf vitrification of immature human oocytes when compared to choline-based slow-freezing

  • Catherine M. H. Combelles
  • S. Temel Ceyhan
  • Haiyan Wang
  • Catherine Racowsky
Gamete Biology

Abstract

Purpose

The cryopreservation of immature oocytes permits oocyte banking for patients at risk of losing their fertility. However, the optimum protocol for such fertility preservation remains uncertain.

Methods

The present study investigated the survival, maturation, cytoskeletal and chromosome organization of sibling immature oocytes leftover from controlled ovarian stimulation cycles, that were either slow-frozen (with choline-substitution) or vitrified. A comparison group included oocytes that were never cryopreserved.

Results

Among the three groups, comparable rates were observed for both survival (67-70%) and polar body extrusion (59-79%). Significantly more oocytes underwent spontaneous activation after IVM following slow-freezing compared with either vitrification or no cryopreservation. Likewise, the incidence of spindle abnormalities was greatest in the slow-frozen group, with no differences in spindle morphometrics or chromosome organization.

Conclusions

While the overall incidence of mature oocytes with normal bipolar spindles from warmed immature oocytes was low, the yield using Cryoleaf vitrification was slightly superior to choline-based slow-freezing.

Keywords

Immature oocyte Choline-based slow-freezing Cryoleaf vitrification Spindle Chromosomes 

References

  1. 1.
    Stachecki JJ, Cohen J. An overview of oocyte cryopreservation. Reprod Biomed Online. 2004;9:152–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Koutlaki N, Schoepper B, Maroulis G, Diedrich K, Al-Hasani S. Human oocyte cryopreservation: past, present and future. Reprod Biomed Online. 2006;13:427–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Cobo A, Vajta G, Remohi J. Vitrification of human mature oocytes in clinical practice. Reprod Biomed Online. 2009;19 Suppl 4:4385.PubMedGoogle Scholar
  4. 4.
    Mandelbaum J, Anastasiou O, Levy R, Guerin JF, de Larouziere V, Antoine JM. Effects of cryopreservation on the meiotic spindle of human oocytes. Eur J Obstet Gynecol Reprod Biol. 2004;113 Suppl 1:S17–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Ledda S, Bogliolo L, Succu S, Ariu F, Bebbere D, Leoni GG, Naitana S. Oocyte cryopreservation: oocyte assessment and strategies for improving survival. Reprod Fertil Dev. 2007;19:13–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Tucker MJ, Wright G, Morton PC, Massey JB. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation. Fertil Steril. 1998;70:578–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Toth TL, Baka SG, Veeck LL, Jones Jr HW, Muasher S, Lanzendorf SE. Fertilization and in vitro development of cryopreserved human prophase I oocytes. Fertil Steril. 1994;61:891–4.PubMedGoogle Scholar
  8. 8.
    Baka SG, Toth TL, Veeck LL, Jones Jr HW, Muasher SJ, Lanzendorf SE. Evaluation of the spindle apparatus of in-vitro matured human oocytes following cryopreservation. Hum Reprod. 1995;10:1816–20.PubMedGoogle Scholar
  9. 9.
    Son WY, Park SE, Lee KA, Lee WS, Ko JJ, Yoon TK, Cha KY. Effects of 1,2-propanediol and freezing-thawing on the in vitro developmental capacity of human immature oocytes. Fertil Steril. 1996;66:995–9.PubMedGoogle Scholar
  10. 10.
    Park SE, Son WY, Lee SH, Lee KA, Ko JJ, Cha KY. Chromosome and spindle configurations of human oocytes matured in vitro after cryopreservation at the germinal vesicle stage. Fertil Steril. 1997;68:920–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Goud A, Goud P, Qian C, Van der Elst J, Van Maele G, Dhont M. Cryopreservation of human germinal vesicle stage and in vitro matured M II oocytes: influence of cryopreservation media on the survival, fertilization, and early cleavage divisions. Fertil Steril. 2000;74:487–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Boiso I, Marti M, Santalo J, Ponsa M, Barri PN, Veiga A. A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum Reprod. 2002;17:1885–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Wu J, Zhang L, Wang X. In vitro maturation, fertilization and embryo development after ultrarapid freezing of immature human oocytes. Reproduction. 2001;121:389–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Isachenko V, Montag M, Isachenko E, Dessole S, Nawroth F, van der Ven H. Aseptic vitrification of human germinal vesicle oocytes using dimethyl sulfoxide as a cryoprotectant. Fertil Steril. 2006;85:741–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Cao Y, Xing Q, Zhang ZG, Wei ZL, Zhou P, Cong L. Cryopreservation of immature and in-vitro matured human oocytes by vitrification. Reprod Biomed Online. 2009;19:369–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Chung HM, Hong SW, Lim JM, Lee SH, Cha WT, Ko JJ, Han SY, Choi DH, Cha KY. In vitro blastocyst formation of human oocytes obtained from unstimulated and stimulated cycles after vitrification at various maturational stages. Fertil Steril. 2000;73:545–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Boldt J, Tidswell N, Sayers A, Kilani R, Cline D. Human oocyte cryopreservation: 5-year experience with a sodium-depleted slow freezing method. Reprod Biomed Online. 2006;13:96–100.PubMedCrossRefGoogle Scholar
  18. 18.
    Boldt J, Cline D, McLaughlin D. Human oocyte cryopreservation as an adjunct to IVF-embryo transfer cycles. Hum Reprod. 2003;18:1250–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Petracco A, Azambuja R, Okada L, Michelon J, Oliani A, Badalotti M. Comparison of embryo quality between sibling embryos originating from frozen or fresh oocytes. Reprod Biomed Online. 2006;13:497–503.PubMedCrossRefGoogle Scholar
  20. 20.
    Cobo A, Perez S, Santos MJ De los, Zulategui J, Domingo J, Remohi J. Effect of different cryopreservation protocols on the metaphase II spindle in human oocytes. Reprod Biomed Online. 2008;17:350–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Chian RC, Huang JY, Gilbert L, Son WY, Holzer H, Cui SJ, Buckett WM, Tulandi T, Tan SL. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril. 2009;91:2391–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Coticchio G, Bromfield JJ, Sciajno R, Gambardella A, Scaravelli G, Borini A, Albertini DF. Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod Biomed Online. 2009;19 Suppl 3:29–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Fadini R, Brambillasca F, Renzini MM, Merola M, Comi R, De Ponti E, Dal Canto MB. Human oocyte cryopreservation: comparison between slow and ultrarapid methods. Reprod Biomed Online. 2009;19:171–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, Bianchi S, Macchiarelli G, Borini A. Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop. Reprod Biomed Online. 2009;19 Suppl 3:17–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Fasano G, Vannin AS, Biramane J, Delbaere A, Englert Y. Cryopreservation of human failed maturation oocytes shows that vitrification gives superior outcomes to slow cooling. Cryobiology. 2010;61:243–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Cao YX, Xing Q, Li L, Cong L, Zhang ZG, Wei ZL, Zhou P. Comparison of survival and embryonic development in human oocytes cryopreserved by slow-freezing and vitrification. Fertil Steril. 2009;92:1306–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Smith GD, Serafini PC, Fioravanti J, Yadid I, Coslovsky M, Hassun P, Alegretti JR, Motta EL. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94:2088–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Stachecki JJ, Cohen J, Willadsen SM. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology. 1998;37:346–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Messinger SM, Albertini DF. Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J Cell Sci. 1991;100(Pt 2):289–98.PubMedGoogle Scholar
  30. 30.
    Cekleniak NA, Combelles CM, Ganz DA, Fung J, Albertini DF, Racowsky C. A novel system for in vitro maturation of human oocytes. Fertil Steril. 2001;75:1185–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Toth TL, Lanzendorf SE, Sandow BA, Veeck LL, Hassen WA, Hansen K, Hodgen GD. Cryopreservation of human prophase I oocytes collected from unstimulated follicles. Fertil Steril. 1994;61:1077–82.PubMedGoogle Scholar
  32. 32.
    Larman MG, Katz-Jaffe MG, Sheehan CB, Gardner DK. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod. 2007;22:250–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction. 2006;131:53–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim BY, Yoon SY, Cha SK, Kwak KH, Fissore RA, Parys JB, Yoon TK, Lee DR. Alterations in calcium oscillatory activity in vitrified mouse eggs impact on egg quality and subsequent embryonic development. Pflugers Arch. 2011;461:515–26.PubMedCrossRefGoogle Scholar
  35. 35.
    Jones KT. Mammalian egg activation: from Ca2+ spiking to cell cycle progression. Reproduction. 2005;130:813–23.PubMedCrossRefGoogle Scholar
  36. 36.
    De Santis L, Coticchio G, Paynter S, Albertini D, Hutt K, Cino I, Iaccarino M, Gambardella A, Flamigni C, Borini A. Permeability of human oocytes to ethylene glycol and their survival and spindle configurations after slow cooling cryopreservation. Hum Reprod. 2007;22:2776–83.PubMedCrossRefGoogle Scholar
  37. 37.
    Nottola SA, Coticchio G, De Santis L, Macchiarelli G, Maione M, Bianchi S, Iaccarino M, Flamigni C, Borini A. Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reprod Biomed Online. 2008;17:368–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Ahn HJ, Sohn IP, Kwon HC, Jo DH, Park YD, Min CK. Characteristics of the cell membrane fluidity, actin fibers, and mitochondrial dysfunctions of frozen-thawed two-cell mouse embryos. Mol Reprod Dev. 2002;61:466–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang X, Al Naib A, Sun DW, Lonergan P. Membrane permeability characteristics of bovine oocytes and development of a step-wise cryoprotectant adding and diluting protocol. Cryobiology. 2010;61:58–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Arav A, Zvi R. Do chilling injury and heat stress share the same mechanism of injury in oocytes? Mol Cell Endocrinol. 2008;282:150–2.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim SS, Battaglia DE, Soules MR. The future of human ovarian cryopreservation and transplantation: fertility and beyond. Fertil Steril. 2001;75:1049–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Comizzoli P, Wildt DE, Pukazhenthi BS. In vitro compaction of germinal vesicle chromatin is beneficial to survival of vitrified cat oocytes. Reprod Domest Anim. 2009;44 Suppl 2:269–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Combelles CM, Cekleniak NA, Racowsky C, Albertini DF. Assessment of nuclear and cytoplasmic maturation in in-vitro matured human oocytes. Hum Reprod. 2002;17:1006–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Albertini DF. Regulation of meiotic maturation in the mammalian oocyte: interplay between exogenous cues and the microtubule cytoskeleton. Bioessays. 1992;14:97–103.PubMedCrossRefGoogle Scholar
  45. 45.
    Ferreira EM, Vireque AA, Adona PR, Meirelles FV, Ferriani RA, Navarro PA. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology. 2009;71:836–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Men H, Monson RL, Rutledge JJ. Effect of meiotic stages and maturation protocols on bovine oocyte's resistance to cryopreservation. Theriogenology. 2002;57:1095–103.PubMedCrossRefGoogle Scholar
  47. 47.
    Reichman DE, Politch J, Ginsburg ES, Racowsky C. Extended in vitro maturation of immature oocytes from stimulated cycles: an analysis of fertilization potential, embryo development, and reproductive outcomes. J Assist Reprod Genet. 2010;27:347–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Banwell KM, Thompson JG. In vitro maturation of Mammalian oocytes: outcomes and consequences. Semin Reprod Med. 2008;26:162–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Imoedemhe DG, Sigue AB. Survival of human oocytes cryopreserved with or without the cumulus in 1,2-propanediol. J Assist Reprod Genet. 1992;9:323–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Gook DA, Osborn SM, Johnston WI. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod. 1993;8:1101–9.PubMedGoogle Scholar
  51. 51.
    Isachenko EF, Nayudu PL. Vitrification of mouse germinal vesicle oocytes: effect of treatment temperature and egg yolk on chromatin and spindle normality and cumulus integrity. Hum Reprod. 1999;14:400–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Bogliolo L, Ariu F, Fois S, Rosati I, Zedda MT, Leoni G, Succu S, Pau S, Ledda S. Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells. Theriogenology. 2007;68:1138–49.PubMedCrossRefGoogle Scholar
  53. 53.
    Tharasanit T, Colleoni S, Galli C, Colenbrander B, Stout TA. Protective effects of the cumulus-corona radiata complex during vitrification of horse oocytes. Reproduction. 2009;137:391–401.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou XL, Al Naib A, Sun DW, Lonergan P. Bovine oocyte vitrification using the Cryotop method: effect of cumulus cells and vitrification protocol on survival and subsequent development. Cryobiology. 2010;61:66–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Hyttel P, Vajta G, Callesen H. Vitrification of bovine oocytes with the open pulled straw method: ultrastructural consequences. Mol Reprod Dev. 2000;56:80–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology. 2000;53:59–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Comizzoli P, Wildt DE, Pukazhenthi BS. Impact of anisosmotic conditions on structural and functional integrity of cumulus-oocyte complexes at the germinal vesicle stage in the domestic cat. Mol Reprod Dev. 2008;75:345–54.PubMedCrossRefGoogle Scholar
  58. 58.
    Modina S, Beretta M, Lodde V, Lauria A, Luciano AM. Cytoplasmic changes and developmental competence of bovine oocytes cryopreserved without cumulus cells. Eur J Histochem. 2004;48:337–46.PubMedGoogle Scholar
  59. 59.
    Luciano AM, Franciosi F, Lodde V, Perazzoli F, Slezakova M, Modina S. Cryopreservation of immature bovine oocytes to reconstruct artificial gametes by germinal vesicle transplantation. Reprod Domest Anim. 2009;44:480–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Catherine M. H. Combelles
    • 1
  • S. Temel Ceyhan
    • 2
  • Haiyan Wang
    • 2
    • 3
  • Catherine Racowsky
    • 2
  1. 1.Biology DepartmentMiddlebury CollegeMiddleburyUSA
  2. 2.Department of Obstetrics, Gynecology, and Reproductive Biology Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Center of Reproductive Medicine, Department of Obstetrics and GynecologyPeking University Third HospitalBeijingPeople’s Republic of China

Personalised recommendations