Skip to main content

Advertisement

Log in

Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation

  • Gonad physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

There is increasing concern that environmental chemicals have a direct effect on fertility. Heavy metals such as mercury have been shown to affect various organ systems in humans including nervous system and skin, however they could also act as endocrine disrupting chemicals adversely affecting fertility. Metals such as zinc and selenium are essential micronutrients with diverse functions that may be important for reproductive outcomes. We measured mercury, zinc and selenium levels in the hair, a reliable reflection of long term environmental exposure and dietary status, to correlate with the outcome of ovarian hyperstimulation for in vitro fertilisation (IVF) treatment.

Methods

We analysed the hair of 30 subfertile women for mercury, zinc and selenium using inductively coupled mass spectrometry. Each woman underwent one cycle of IVF treatment. Correlation between the levels of these trace metals and treatment outcomes was investigated.

Results

Thirty women were recruited with mean (±SD) age of 32.7(4.4) years and BMI of 25.4(5.0)kg/m2. Hair mercury concentration showed a negative correlation with oocyte yield (p < 0.05,βcoefficient 0.38) and follicle number (p = 0.03,β coefficient0.19) after ovarian stimulation. Zinc and selenium levels in hair correlated positively with oocyte yield after ovarian stimulation (p < 0.05,β coefficient0.15) and (p = 0.03,β coefficient0.21) respectively. Selenium levels in hair correlated significantly with follicle number following stimulation (p = 0.04, βcoefficient0.22). There was no correlation between mercury, zinc and selenium in hair and their corresponding serum levels.

Conclusion

These data suggest that mercury had a deleterious effect whilst there was a positive effect for zinc and selenium in the ovarian response to gonadotrophin therapy for IVF. Hair analysis offers a novel method of investigating the impact of long-term exposure to endocrine disruptors and nutritional status on reproductive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Templeton A, Fraser C, Thompson B. The epidemiology of infertility in Aberdeen. BMJ. 1990;301(6744):148–52.

    Article  PubMed  CAS  Google Scholar 

  2. Botting B, Dunnell K. Trends in fertility and contraception in the last quarter of the 20th century. Popul Trends. 2000;100:32–9.

    PubMed  Google Scholar 

  3. Hull MG, Glazener CM, Kelly NJ, et al. Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed). 1985;291(6510):1693–7.

    Article  CAS  Google Scholar 

  4. Andersen AN, Goossens V, Ferraretti AP, et al. Assisted reproductive technology in Europe, 2004: results generated from European registers by ESHRE. Hum Reprod. 2008;23(4):756–71.

    Article  PubMed  Google Scholar 

  5. Al-Saleh I, Coskun S, Mashhour A, et al. Exposure to heavy metals (lead, cadmium and mercury) and its effect on the outcome of in-vitro fertilization treatment. Int J Hyg Environ Health. 2008;211(5–6):560–79.

    Article  PubMed  CAS  Google Scholar 

  6. Guillette Jr LJ, Moore BC. Environmental contaminants, fertility, and multioocytic follicles: a lesson from wildlife? Semin Reprod Med. 2006;24(3):134–41.

    Article  PubMed  CAS  Google Scholar 

  7. Sharara FI, Seifer DB, Flaws JA. Environmental toxicants and female reproduction. Fertil Steril. 1998;70(4):613–22.

    Article  PubMed  CAS  Google Scholar 

  8. Choi SM, Yoo SD, Lee BM. Toxicological characteristics of endocrine-disrupting chemicals: developmental toxicity, carcinogenicity, and mutagenicity. J Toxicol Environ Health B Crit Rev. 2004;7(1):1–24.

    PubMed  CAS  Google Scholar 

  9. Gerhard I, Runnebaum B. The limits of hormone substitution in pollutant exposure and fertility disorders. Zentralbl Gynakol. 1992;114(12):593–602.

    PubMed  CAS  Google Scholar 

  10. Gardella JR, Hill 3rd JA. Environmental toxins associated with recurrent pregnancy loss. Semin Reprod Med. 2000;18(4):407–24.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi Y, Tsuruta S, Arimoto M, Tanaka H, Yoshida M. Placental transfer of mercury in pregnant rats which received dental amalgam restorations. Toxicology. 2003;185(1–2):23–33.

    Article  PubMed  CAS  Google Scholar 

  12. Shen W, Chen Y, Li C, Ji Q. Effect of mercury chloride on the reproductive function and visceral organ of female mouse. Wei Sheng Yan Jiu. 2000;29(2):75–7.

    PubMed  CAS  Google Scholar 

  13. Ebisch IM, Thomas CM, Peters WH, Braat DD, Steegers-Theunissen RP. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update. 2007;13(2):163–74.

    Article  PubMed  CAS  Google Scholar 

  14. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    Article  PubMed  Google Scholar 

  15. Lorenzo Alonso MJ, Bermejo Barrera A, Cocho de Juan JA, Fraga Bermudez JM, Bermejo Barrera P. Selenium levels in related biological samples: human placenta, maternal and umbilical cord blood, hair and nails. J Trace Elem Med Biol. 2005;19(1):49–54.

    Article  PubMed  Google Scholar 

  16. Yokoi K, Egger NG, Ramanujam VM, et al. Association between plasma zinc concentration and zinc kinetic parameters in premenopausal women. Am J Physiol Endocrinol Metab. 2003;285(5):E1010–20.

    PubMed  CAS  Google Scholar 

  17. Izquierdo Alvarez S, Castanon SG, Ruata ML, et al. Updating of normal levels of copper, zinc and selenium in serum of pregnant women. J Trace Elem Med Biol. 2007;21 Suppl 1:49–52.

    Article  PubMed  CAS  Google Scholar 

  18. Razagui IB, Haswell SJ. The determination of mercury and selenium in maternal and neonatal scalp hair by inductively coupled plasma-mass spectrometry. J Anal Toxicol. 1997;21(2):149–53.

    PubMed  CAS  Google Scholar 

  19. Birkett MA, Day SJ. Internal pilot studies for estimating sample size. Stat Med. 1994;13(23–24):2455–63.

    Article  PubMed  CAS  Google Scholar 

  20. Clifton 2nd JC. Mercury exposure and public health. Pediatr Clin North Am. 2007;54(2):237–69. viii.

    Article  PubMed  Google Scholar 

  21. WHO. Environmental Health Criteria 118: Inorganic Mercury. In: World Health Organisation G, ed.

  22. McRill C, Boyer LV, Flood TJ, Ortega L. Mercury toxicity due to use of a cosmetic cream. J Occup Environ Med. 2000;42(1):4–7.

    Article  PubMed  CAS  Google Scholar 

  23. al-Saleh I, Shinwari N. Urinary mercury levels in females: influence of skin-lightening creams and dental amalgam fillings. Biometals. 1997;10(4):315–23.

    Article  PubMed  CAS  Google Scholar 

  24. McKelvey W, Jeffery N, Clark N, Kass D, Parsons PJ. Population-based inorganic mercury biomonitoring and the identification of skin care products as a source of exposure in New York City. Environ Health Perspect. 2011;119(2):203–9.

    Article  PubMed  CAS  Google Scholar 

  25. Davis BJ, Price HC, O'Connor RW, Fernando R, Rowland AS, Morgan DL. Mercury vapor and female reproductive toxicity. Toxicol Sci. 2001;59(2):291–6.

    Article  PubMed  CAS  Google Scholar 

  26. Oken E, Radesky JS, Wright RO, et al. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol. 2008;167(10):1171–81.

    Article  PubMed  Google Scholar 

  27. Geier DA, Kern JK, Geier MR. A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity. Acta Neurobiol Exp (Wars). 2009;69(2):189–97.

    Google Scholar 

  28. Myers GJ, Thurston SW, Pearson AT, et al. Postnatal exposure to methyl mercury from fish consumption: a review and new data from the Seychelles Child Development Study. Neurotoxicology. 2009;30(3):338–49.

    Article  PubMed  CAS  Google Scholar 

  29. Choy CM, Lam CW, Cheung LT, Briton-Jones CM, Cheung LP, Haines CJ. Infertility, blood mercury concentrations and dietary seafood consumption: a case-control study. BJOG. 2002;109(10):1121–5.

    PubMed  CAS  Google Scholar 

  30. Craig WJ. Health effects of vegan diets. Am J Clin Nutr. 2009;89(5):1627S–33S.

    Article  PubMed  CAS  Google Scholar 

  31. Rayman MP. Dietary selenium: time to act. BMJ. 1997;314(7078):387–8.

    Article  PubMed  CAS  Google Scholar 

  32. Falchuk KH. The molecular basis for the role of zinc in developmental biology. Mol Cell Biochem. 1998;188(1–2):41–8.

    Article  PubMed  CAS  Google Scholar 

  33. Freedman LP. Anatomy of the steroid receptor zinc finger region. Endocr Rev. 1992;13(2):129–45.

    PubMed  CAS  Google Scholar 

  34. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol. 2006;80(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  35. Prasad AS. Zinc: mechanisms of host defense. J Nutr. 2007;137(5):1345–9.

    PubMed  CAS  Google Scholar 

  36. Bedwal RS, Bahuguna A. Zinc, copper and selenium in reproduction. Experientia. 1994;50(7):626–40.

    Article  PubMed  CAS  Google Scholar 

  37. Favier AE. The role of zinc in reproduction. Hormonal mechanisms. Biol Trace Elem Res. 1992;32:363–82.

    Article  PubMed  CAS  Google Scholar 

  38. Shah D, Sachdev HP. Zinc deficiency in pregnancy and fetal outcome. Nutr Rev. 2006;64(1):15–30.

    Article  PubMed  Google Scholar 

  39. Soltan MH, Jenkins DM. Plasma copper and zinc concentrations and infertility. Br J Obstet Gynaecol. 1983;90(5):457–9.

    Article  PubMed  CAS  Google Scholar 

  40. Ng SC, Karunanithy R, Edirisinghe WR, Roy AC, Wong PC, Ratnam SS. Human follicular fluid levels of calcium, copper and zinc. Gynecol Obstet Invest. 1987;23(2):129–32.

    Article  PubMed  CAS  Google Scholar 

  41. Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–41.

    Article  PubMed  CAS  Google Scholar 

  42. Munoz C, Carson AF, McCoy MA, et al. Effect of supplementation with barium selenate on the fertility, prolificacy and lambing performance of hill sheep. Vet Rec. 2009;164(9):265–71.

    Article  PubMed  CAS  Google Scholar 

  43. Zachara BA, Dobrzynski W, Trafikowska U, Szymanski W. Blood selenium and glutathione peroxidases in miscarriage. BJOG. 2001;108(3):244–7.

    Article  PubMed  CAS  Google Scholar 

  44. Al-Kunani AS, Knight R, Haswell SJ, Thompson JW, Lindow SW. The selenium status of women with a history of recurrent miscarriage. BJOG. 2001;108(10):1094–7.

    Article  PubMed  CAS  Google Scholar 

  45. Rayman MP, Bode P, Redman CW. Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol. 2003;189(5):1343–9.

    Article  PubMed  CAS  Google Scholar 

  46. Paszkowski T, Traub AI, Robinson SY, McMaster D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta. 1995;236(2):173–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sathyapalan.

Additional information

Capsule Mercury concentration in hair had a deleterious effect where as zinc and selenium had a beneficial effect in ovarian response to gonadotrophin therapy for IVF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickerson, E.H., Sathyapalan, T., Knight, R. et al. Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation. J Assist Reprod Genet 28, 1223–1228 (2011). https://doi.org/10.1007/s10815-011-9652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9652-3

Keywords

Navigation