Journal of Assisted Reproduction and Genetics

, Volume 28, Issue 10, pp 931–938 | Cite as

Relative expression of genes encoding SMAD signal transduction factors in human granulosa cells is correlated with oocyte quality

  • Fang-Ting Kuo
  • Kenneth Fan
  • Gayane Ambartsumyan
  • Priya Menon
  • Aline Ketefian
  • Ikuko K. Bentsi-Barnes
  • Margareta D. Pisarska
Gonadal Physiology and Disease



To determine the expression of SMAD transcripts in human granulosa cells.


Luteinized mural granulosa cells were harvested from forty women undergoing oocyte retrieval, and RNAs were isolated. SMAD expression levels were determined by polymerase chain reaction (PCR) and quantitative real-time PCR (q-RTPCR).


SMAD1-7 and 9 are expressed in human granulosa cells, with SMAD2, 3 and 4 showing the highest expression levels. Peak estradiol (E2) levels correlated with the number of oocytes retrieved during IVF. Oocyte number showed no correlation with SMAD expression levels or ratios. Fertilization rates also did not correlate with the expression levels of individual SMADs, but did correlate with higher SMAD4:SMAD3 ratios (p = 0.0062) and trended with SMAD4:SMAD2 (p = 0.0698).


SMAD transcripts are differently expressed in human granulosa cells, where they may mediate TGF-beta superfamily signaling during folliculogenesis and ovulation. Further, the relative expression ratios of SMAD2, 3 and 4 may differentially affect fertilization rate.


SMAD Signal transduction TGF-beta Ovary Granulosa cell Human gene expression 



This work was supported by a grant from the Helping Hands of Los Angeles, Inc. (MP). We would like to acknowledge Catherine Bresee for her statistical expertise.


  1. 1.
    Adashi EY. Endocrinology of the ovary. Hum Reprod. 1994;9:815–27.PubMedGoogle Scholar
  2. 2.
    Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296:2178–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, et al. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA. 1999;96:7282–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Knight PG, Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78:165–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Mazerbourg S, Hsueh AJ. Growth differentiation factor-9 signaling in the ovary. Mol Cell Endocrinol. 2003;202:31–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 2005;11:143–60.PubMedGoogle Scholar
  7. 7.
    Erickson GF. Role of growth factors in ovary organogenesis. J Soc Gynecol Investig. 2001;8:S13–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Spicer LJ, Aad PY, Allen D, Mazerbourg S, Hsueh AJ. Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. J Endocrinol. 2006;189:329–39.PubMedCrossRefGoogle Scholar
  9. 9.
    CDC. Centers for Disease Control and Prevention—Division of Reproductive Health; 2009.Google Scholar
  10. 10.
    Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Attisano L, Wrana JL. Mads and Smads in TGF beta signalling. Curr Opin Cell Biol. 1998;10:188–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Whitman M. Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev. 1998;12:2445–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002;296:1646–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.PubMedCrossRefGoogle Scholar
  15. 15.
    Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001;114:4359–69.PubMedGoogle Scholar
  16. 16.
    Kaivo-oja N, Jeffery LA, Ritvos O, Mottershead DG. Smad signalling in the ovary. Reprod Biol Endocrinol. 2006;4:21.PubMedCrossRefGoogle Scholar
  17. 17.
    Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;7:1191–204.PubMedCrossRefGoogle Scholar
  18. 18.
    Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science (New York, NY). 1996;271:350–3.CrossRefGoogle Scholar
  19. 19.
    Shi Y, Hata A, Lo RS, Massague J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997;388:87–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol. 2001;155:1017–27.PubMedCrossRefGoogle Scholar
  21. 21.
    Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S. Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J. 2001;20:4132–42.PubMedCrossRefGoogle Scholar
  22. 22.
    ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004;29:265–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005;16:251–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Drummond AE, Dyson M, Le MT, Ethier JF, Findlay JK. Ovarian follicle populations of the rat express TGF-beta signalling pathways. Mol Cell Endocrinol. 2003;202:53–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Xu J, Oakley J, McGee EA. Stage-specific expression of Smad2 and Smad3 during folliculogenesis. Biol Reprod. 2002;66:1571–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Bristol-Gould SK, Hutten CG, Sturgis C, Kilen SM, Mayo KE, Woodruff TK. The development of a mouse model of ovarian endosalpingiosis. Endocrinology. 2005;146:5228–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Pangas SA, Li X, Robertson EJ, Matzuk MM. Premature luteinization and cumulus cell defects in ovarian-specific Smad4 knockout mice. Mol Endocrinol. 2006;20:1406–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell. 1998;94:703–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Tomic D, Brodie SG, Deng C, Hickey RJ, Babus JK, Malkas LH, et al. Smad 3 may regulate follicular growth in the mouse ovary. Biol Reprod. 2002;66:917–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Tomic D, Miller KP, Kenny HA, Woodruff TK, Hoyer P, Flaws JA. Ovarian follicle development requires Smad3. Mol Endocrinol. 2004;18:2224–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Chang SY, Kang HY, Lan KC, Hseh CY, Huang FJ, Huang KE. Expression of inhibin-activin subunits, follistatin and smads in granulosa-luteal cells collected at oocyte retrieval. J Assist Reprod Genet. 2006;23:385–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Yap OW, Chandrasekher YA, Giudice LC. Growth factor regulation of insulin-like growth factor binding protein secretion by cultured human granulosa-luteal cells. Fertil Steril. 1998;70:535–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Kovalevsky G, Patrizio P. High rates of embryo wastage with use of assisted reproductive technology: a look at the trends between 1995 and 2001 in the United States. Fertil Steril. 2005;84:325–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Park Y, Maizels ET, Feiger ZJ, Alam H, Peters CA, Woodruff TK, et al. Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from Smad. J Biol Chem. 2005;280:9135–48.PubMedCrossRefGoogle Scholar
  35. 35.
    Hosaka T, Biggs 3rd WH, Tieu D, Boyer AD, Varki NM, Cavenee WK, et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA. 2004;101:2975–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Cunningham MA, Zhu Q, Hammond JM. FoxO1a can alter cell cycle progression by regulating the nuclear localization of p27kip in granulosa cells. Mol Endocrinol. 2004;18:1756–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Cunningham MA, Zhu Q, Unterman TG, Hammond JM. Follicle-stimulating hormone promotes nuclear exclusion of the forkhead transcription factor FoxO1a via phosphatidylinositol 3-kinase in porcine granulosa cells. Endocrinology. 2003;144:5585–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301:215–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Brenkman AB, Burgering BM. FoxO3a eggs on fertility and aging. Trends Mol Med. 2003;9:464–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Pisarska MD, Kuo F-T, Tang D, Zarrini P, Khan S, Ketefian A. Expression of forkhead transcription factors in human granulosa cells. Fertil Steril. 2009;91:1392–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Li Q, Pangas SA, Jorgez CJ, Graff JM, Weinstein M, Matzuk MM. Redundant roles of SMAD2 and SMAD3 in ovarian granulosa cells in vivo. Mol Cell Biol. 2008;28:7001–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Fried G, Remaeus K, Harlin J, Krog E, Csemiczky G, Aanesen A, et al. Inhibin B predicts oocyte number and the ratio IGF-I/IGFBP-1 may indicate oocyte quality during ovarian hyperstimulation for in vitro fertilization. J Assist Reprod Genet. 2003;20:167–76.PubMedCrossRefGoogle Scholar
  43. 43.
    Sun W, Stegmann BJ, Henne M, Catherino WH, Segars JH. A new approach to ovarian reserve testing. Fertil Steril. 2008;90:2196–202.PubMedCrossRefGoogle Scholar
  44. 44.
    Smeenk JM, Sweep FC, Zielhuis GA, Kremer JA, Thomas CM, Braat DD. Antimullerian hormone predicts ovarian responsiveness, but not embryo quality or pregnancy, after in vitro fertilization or intracyoplasmic sperm injection. Fertil Steril. 2007;87:223–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Lie Fong S, Baart EB, Martini E, Schipper I, Visser JA, Themmen AP, et al. Anti-Mullerian hormone: a marker for oocyte quantity, oocyte quality and embryo quality? Reprod Biomed Online. 2008;16:664–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Majumder K, Gelbaya TA, Laing I, Nardo LG. The use of anti-Mullerian hormone and antral follicle count to predict the potential of oocytes and embryos. Eur J Obstet Gynecol Reprod Biol. 2010;150:166–70.PubMedCrossRefGoogle Scholar
  47. 47.
    Lekamge DN, Barry M, Kolo M, Lane M, Gilchrist RB, Tremellen KP. Anti-Mullerian hormone as a predictor of IVF outcome. Reprod Biomed Online. 2007;14:602–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Takahashi C, Fujito A, Kazuka M, Sugiyama R, Ito H, Isaka K. Anti-Mullerian hormone substance from follicular fluid is positively associated with success in oocyte fertilization during in vitro fertilization. Fertil Steril. 2008;89:586–91.PubMedCrossRefGoogle Scholar
  49. 49.
    Li Q, McKenzie LJ, Matzuk MM. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol Hum Reprod. 2008;14:673–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Adriaenssens T, Wathlet S, Segers I, Verheyen G, De Vos A, Van der Elst J, et al. Cumulus cell gene expression is associated with oocyte developmental quality and influenced by patient and treatment characteristics. Hum Reprod. 2010;25:1259–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, et al. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.PubMedCrossRefGoogle Scholar
  52. 52.
    Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14:711–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Fang-Ting Kuo
    • 1
  • Kenneth Fan
    • 1
  • Gayane Ambartsumyan
    • 1
    • 2
  • Priya Menon
    • 2
  • Aline Ketefian
    • 1
  • Ikuko K. Bentsi-Barnes
    • 1
  • Margareta D. Pisarska
    • 1
    • 2
  1. 1.Center for Fertility and Reproductive Medicine, Division of REI, Department of Ob/GynCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.David Geffen School of MedicineUCLALos AngelesUSA

Personalised recommendations