Preimplantation genetic screening: does it help or hinder IVF treatment and what is the role of the embryo?



Despite an ongoing debate over its efficacy, preimplantation genetic screening (PGS) is increasingly being used to detect numerical chromosomal abnormalities in embryos to improve implantation rates after IVF. The main indications for the use of PGS in IVF treatments include advanced maternal age, repeated implantation failure, and recurrent pregnancy loss. The success of PGS is highly dependent on technical competence, embryo culture quality, and the presence of mosaicism in preimplantation embryos. Today, cleavage stage biopsy is the most commonly used method for screening preimplantation embryos for aneuploidy. However, blastocyst biopsy is rapidly becoming the more preferred method due to a decreased likelihood of mosaicism and an increase in the amount of DNA available for testing. Instead of using 9 to 12 chromosome FISH, a 24 chromosome detection by aCGH or SNP microarray will be used. Thus, it is advised that before attempting to perform PGS and expecting any benefit, extended embryo culture towards day 5/6 should be established and proven and the clinical staff should demonstrate competence with routine competency assessments. A properly designed randomized control trial is needed to test the potential benefits of these new developments.


Preimplantation genetic screening Aneuploidy In vitro fertilization Embryo quality Embryo biopsy 



This work was supported by funds from the Cleveland Clinic’s Center for Reproductive Medicine, Cleveland, Ohio. United States.


  1. 1.
    Handyside AH et al. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Verlinsky Y et al. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod. 1990;5(7):826–9.PubMedGoogle Scholar
  3. 3.
    Grifo JA et al. Preimplantation genetic diagnosis. In situ hybridization as a tool for analysis. Arch Pathol Lab Med. 1992;116(4):393–7.PubMedGoogle Scholar
  4. 4.
    Xu K et al. First unaffected pregnancy using preimplantation genetic diagnosis for sickle cell anemia. JAMA. 1999;281(18):1701–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Munne S et al. Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer. Am J Obstet Gynecol. 1995;172(4 Pt 1):1191–9. discussion 1199–201.PubMedCrossRefGoogle Scholar
  6. 6.
    Munne S et al. Improved implantation after preimplantation genetic diagnosis of aneuploidy. Reprod Biomed Online. 2003;7(1):91–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Verlinsky Y, Kuliev A. Preimplantation diagnosis for diseases with genetic predisposition and nondisease testing. Expert Rev Mol Diagn. 2002;2(5):509–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Verlinsky Y et al. Preimplantation diagnosis for Fanconi anemia combined with HLA matching. JAMA. 2001;285(24):3130–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Griffin DK. The incidence, origin, and etiology of aneuploidy. Int Rev Cytol. 1996;167:263–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Munne S et al. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online. 2007;14(5):628–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Sandalinas M et al. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod. 2001;16(9):1954–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Alfarawati S et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil Steril. 2011;95(2):520–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Li M et al. Fluorescence in situ hybridization reanalysis of day-6 human blastocysts diagnosed with aneuploidy on day 3. Fertil Steril. 2005;84(5):1395–400.PubMedCrossRefGoogle Scholar
  14. 14.
    Munne S. Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod Biomed Online. 2006;12(2):234–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Baruch S, Kaufman D, Hudson KL. Genetic testing of embryos: practices and perspectives of US in vitro fertilization clinics. Fertil Steril. 2008;89(5):1053–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Goossens V et al. ESHRE PGD consortium data collection IX: cycles from January to December 2006 with pregnancy follow-up to October 2007. Hum Reprod. 2009;24(8):1786–810.PubMedCrossRefGoogle Scholar
  17. 17.
    Munne S et al. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8(12):2185–91.PubMedGoogle Scholar
  18. 18.
    Munne S et al. The use of first polar bodies for preimplantation diagnosis of aneuploidy. Hum Reprod. 1995;10(4):1014–20.PubMedGoogle Scholar
  19. 19.
    Verlinsky Y et al. Birth of healthy children after preimplantation diagnosis of common aneuploidies by polar body fluorescent in situ hybridization analysis. Preimplantation Genetics Group. Fertil Steril. 1996;66(1):126–9.PubMedGoogle Scholar
  20. 20.
    Munne S et al. Preimplantation genetic diagnosis significantly reduces pregnancy loss in infertile couples: a multicenter study. Fertil Steril. 2006;85(2):326–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Munne S et al. Positive outcome after preimplantation diagnosis of aneuploidy in human embryos. Hum Reprod. 1999;14(9):2191–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Gianaroli L et al. Preimplantation diagnosis for aneuploidies in patients undergoing in vitro fertilization with a poor prognosis: identification of the categories for which it should be proposed. Fertil Steril. 1999;72(5):837–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Munne S et al. Preimplantation genetic diagnosis reduces pregnancy loss in women aged 35 years and older with a history of recurrent miscarriages. Fertil Steril. 2005;84(2):331–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Colls P et al. Increased efficiency of preimplantation genetic diagnosis for infertility using “no result rescue”. Fertil Steril. 2007;88(1):53–61.PubMedCrossRefGoogle Scholar
  25. 25.
    McArthur SJ et al. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005;84(6):1628–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Schoolcraft WB, et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2009Google Scholar
  27. 27.
    Adamson D, Baker V. Multiple births from assisted reproductive technologies: a challenge that must be met. Fertil Steril. 2004;81(3):517–22. discussion 526.PubMedCrossRefGoogle Scholar
  28. 28.
    Tiitinen A et al. Elective single embryo transfer: the value of cryopreservation. Hum Reprod. 2001;16(6):1140–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Dhont M. Single-embryo transfer. Semin Reprod Med. 2001;19(3):251–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Varghese AC, Nagy ZP, Agarwal A. Current trends, biological foundations and future prospects of oocyte and embryo cryopreservation. Reprod Biomed Online. 2009;19(1):126–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Stillman RJ et al. Elective single embryo transfer: a 6-year progressive implementation of 784 single blastocyst transfers and the influence of payment method on patient choice. Fertil Steril. 2009;92(6):1895–906.PubMedCrossRefGoogle Scholar
  32. 32.
    Leese B, Denton J. Attitudes towards single embryo transfer, twin and higher order pregnancies in patients undergoing infertility treatment: a review. Hum Fertil (Camb). 2010;13(1):28–34.CrossRefGoogle Scholar
  33. 33.
    Pinborg A et al. Morbidity in a Danish national cohort of 472 IVF/ICSI twins, 1132 non-IVF/ICSI twins and 634 IVF/ICSI singletons: health-related and social implications for the children and their families. Hum Reprod. 2003;18(6):1234–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Stromberg B et al. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet. 2002;359(9305):461–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Gelbaya TA, Tsoumpou I, Nardo LG. The likelihood of live birth and multiple birth after single versus double embryo transfer at the cleavage stage: a systematic review and meta-analysis. Fertil Steril. 2009Google Scholar
  36. 36.
    Munne S et al. Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online. 2004;8(1):81–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Silber S et al. Chromosomal abnormalities in embryos derived from testicular sperm extraction. Fertil Steril. 2003;79(1):30–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Platteau P et al. Comparison of the aneuploidy frequency in embryos derived from testicular sperm extraction in obstructive and non-obstructive azoospermic men. Hum Reprod. 2004;19(7):1570–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Donoso P et al. Does PGD for aneuploidy screening change the selection of embryos derived from testicular sperm extraction in obstructive and non-obstructive azoospermic men? Hum Reprod. 2006;21(9):2390–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Munne S et al. Wide range of chromosome abnormalities in the embryos of young egg donors. Reprod Biomed Online. 2006;12(3):340–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones KT. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update. 2008;14(2):143–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Oliver TR et al. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet. 2008;4(3):e1000033.PubMedCrossRefGoogle Scholar
  43. 43.
    Kuliev A, Verlinsky Y. Current features of preimplantation genetic diagnosis. Reprod Biomed Online. 2002;5(3):294–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Angell R. First-meiotic-division nondisjunction in human oocytes. Am J Hum Genet. 1997;61(1):23–32.PubMedCrossRefGoogle Scholar
  45. 45.
    Hunt PA, Hassold TJ. Sex matters in meiosis. Science. 2002;296(5576):2181–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Angell RR. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet. 1991;86(4):383–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Vialard F et al. Evidence of a high proportion of premature unbalanced separation of sister chromatids in the first polar bodies of women of advanced age. Hum Reprod. 2006;21(5):1172–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Rosenbusch BE, Schneider M. Cytogenetic analysis of human oocytes remaining unfertilized after intracytoplasmic sperm injection. Fertil Steril. 2006;85(2):302–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Fragouli E et al. Comparative genomic hybridization analysis of human oocytes and polar bodies. Hum Reprod. 2006;21(9):2319–28.PubMedCrossRefGoogle Scholar
  50. 50.
    Dailey T et al. Association between nondisjunction and maternal age in meiosis-II human oocytes. Am J Hum Genet. 1996;59(1):176–84.PubMedGoogle Scholar
  51. 51.
    Delhanty JD. Mechanisms of aneuploidy induction in human oogenesis and early embryogenesis. Cytogenet Genome Res. 2005;111(3–4):237–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Nagy ZP. Sperm centriole disfunction and sperm immotility. Mol Cell Endocrinol. 2000;166(1):59–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Sathananthan AH et al. Centrioles in the beginning of human development. Proc Natl Acad Sci U S A. 1991;88(11):4806–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Obasaju M et al. Sperm quality may adversely affect the chromosome constitution of embryos that result from intracytoplasmic sperm injection. Fertil Steril. 1999;72(6):1113–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Leduc F, Nkoma GB, Boissonneault G. Spermiogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med. 2008;54(1):3–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Munne S et al. Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril. 1995;64(2):382–91.PubMedGoogle Scholar
  57. 57.
    Marquez C et al. Chromosome abnormalities in 1255 cleavage-stage human embryos. Reprod Biomed Online. 2000;1(1):17–26.PubMedCrossRefGoogle Scholar
  58. 58.
    Munne S et al. Chromosome mosaicism in human embryos. Biol Reprod. 1994;51(3):373–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Wells D et al. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy. Fertil Steril. 2002;78(3):543–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Voullaire L et al. Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridization. Hum Genet. 2000;106(2):210–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Munne S et al. Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil Steril. 2005;84(5):1328–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Powis Z, Erickson RP. Uniparental disomy and the phenotype of mosaic trisomy 20: a new case and review of the literature. J Appl Genet. 2009;50(3):293–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Rieubland C et al. Two cases of trisomy 16 mosaicism ascertained postnatally. Am J Med Genet A. 2009;149A(7):1523–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Lightfoot DA et al. The fate of mosaic aneuploid embryos during mouse development. Dev Biol. 2006;289(2):384–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Kanka J et al. Identification of differentially expressed mRNAs in bovine preimplantation embryos. Zygote. 2003;11(1):43–52.PubMedCrossRefGoogle Scholar
  66. 66.
    Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update. 2004;10(1):3–18.PubMedCrossRefGoogle Scholar
  67. 67.
    Ledbetter DH, Engel E. Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum Mol Genet. 1995;4 Spec No:1757–64.PubMedGoogle Scholar
  68. 68.
    Coonen E et al. Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. Hum Reprod. 2004;19(2):316–24.PubMedCrossRefGoogle Scholar
  69. 69.
    Spence JE et al. Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet. 1988;42(2):217–26.PubMedGoogle Scholar
  70. 70.
    Barbash-Hazan S, et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2008Google Scholar
  71. 71.
    Northrop LE et al. SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16(8):590–600.PubMedCrossRefGoogle Scholar
  72. 72.
    Fragouli E et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23(11):2596–608.PubMedCrossRefGoogle Scholar
  73. 73.
    Weghofer A et al. Lack of association between polycystic ovary syndrome and embryonic aneuploidy. Fertil Steril. 2007;88(4):900–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Gogusev J et al. Detection of DNA copy number changes in human endometriosis by comparative genomic hybridization. Hum Genet. 1999;105(5):444–51.PubMedCrossRefGoogle Scholar
  75. 75.
    Massie JA et al. Ovarian stimulation and the risk of aneuploid conceptions. Fertil Steril. 2011;95(3):970–2.PubMedCrossRefGoogle Scholar
  76. 76.
    Terada Y, et al. Different embryonic development after blastomere biopsy for preimplantation genetic diagnosis, observed by time-lapse imaging. Fertil Steril. 2009Google Scholar
  77. 77.
    Baart EB et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod. 2007;22(4):980–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Weghofer A, et al. The impact of LH-containing gonadotropin stimulation on euploidy rates in preimplantation embryos: antagonist cycles. Fertil Steril. 2008Google Scholar
  79. 79.
    Weghofer A et al. The impact of LH-containing gonadotropins on diploidy rates in preimplantation embryos: long protocol stimulation. Hum Reprod. 2008;23(3):499–503.PubMedCrossRefGoogle Scholar
  80. 80.
    Chappel SC, Howles C. Reevaluation of the roles of luteinizing hormone and follicle-stimulating hormone in the ovulatory process. Hum Reprod. 1991;6(9):1206–12.PubMedGoogle Scholar
  81. 81.
    Fleming R et al. Effects of profound suppression of luteinizing hormone during ovarian stimulation on follicular activity, oocyte and embryo function in cycles stimulated with purified follicle stimulating hormone. Hum Reprod. 1998;13(7):1788–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Andersen AN, Devroey P, Arce JC. Clinical outcome following stimulation with highly purified hMG or recombinant FSH in patients undergoing IVF: a randomized assessor-blind controlled trial. Hum Reprod. 2006;21(12):3217–27.PubMedCrossRefGoogle Scholar
  83. 83.
    Balasch J et al. Suppression of LH during ovarian stimulation: analysing threshold values and effects on ovarian response and the outcome of assisted reproduction in down-regulated women stimulated with recombinant FSH. Hum Reprod. 2001;16(8):1636–43.PubMedCrossRefGoogle Scholar
  84. 84.
    Barrenetxea G et al. Ovarian response and pregnancy outcome in poor-responder women: a randomized controlled trial on the effect of luteinizing hormone supplementation on in vitro fertilization cycles. Fertil Steril. 2008;89(3):546–53.PubMedCrossRefGoogle Scholar
  85. 85.
    Emery BR et al. In vitro oocyte maturation and subsequent delayed fertilization is associated with increased embryo aneuploidy. Fertil Steril. 2005;84(4):1027–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Bielanska M, Tan SL, Ao A. Different probe combinations for assessment of postzygotic chromosomal imbalances in human embryos. J Assist Reprod Genet. 2002;19(4):177–82.PubMedCrossRefGoogle Scholar
  87. 87.
    Velilla E, Escudero T, Munne S. Blastomere fixation techniques and risk of misdiagnosis for preimplantation genetic diagnosis of aneuploidy. Reprod Biomed Online. 2002;4(3):210–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Joris H et al. Comparison of the results of human embryo biopsy and outcome of PGD after zona drilling using acid Tyrode medium or a laser. Hum Reprod. 2003;18(9):1896–902.PubMedCrossRefGoogle Scholar
  89. 89.
    Chatzimeletiou K et al. Comparison of effects of zona drilling by non-contact infrared laser or acid Tyrode’s on the development of human biopsied embryos as revealed by blastomere viability, cytoskeletal analysis and molecular cytogenetics. Reprod Biomed Online. 2005;11(6):697–710.PubMedCrossRefGoogle Scholar
  90. 90.
    Jones AE et al. Comparison of laser-assisted hatching and acidified Tyrode’s hatching by evaluation of blastocyst development rates in sibling embryos: a prospective randomized trial. Fertil Steril. 2006;85(2):487–91.PubMedCrossRefGoogle Scholar
  91. 91.
    Dawson A, Griesinger G, Diedrich K. Screening oocytes by polar body biopsy. Reprod Biomed Online. 2006;13(1):104–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Hansis C et al. Assessment of beta-HCG, beta-LH mRNA and ploidy in individual human blastomeres. Reprod Biomed Online. 2002;5(2):156–61.PubMedCrossRefGoogle Scholar
  93. 93.
    Gardner RL. Experimental analysis of second cleavage in the mouse. Hum Reprod. 2002;17(12):3178–89.PubMedCrossRefGoogle Scholar
  94. 94.
    Gardner RL, Davies TJ. The basis and significance of pre-patterning in mammals. Philos Trans R Soc Lond B Biol Sci. 2003;358(1436):1331–8. discussion 1338–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Gardner RL, Davies TJ. Is the plane of first cleavage related to the point of sperm entry in the mouse? Reprod Biomed Online. 2003;6(2):157–60.PubMedCrossRefGoogle Scholar
  96. 96.
    Goossens V et al. ESHRE PGD consortium data collection VIII: cycles from January to December 2005 with pregnancy follow-up to October 2006. Hum Reprod. 2008;23(12):2629–45.PubMedCrossRefGoogle Scholar
  97. 97.
    Harper JC et al. ESHRE PGD consortium data collection X: cycles from January to December 2007 with pregnancy follow-up to October 2008. Hum Reprod. 2010;25(11):2685–707.PubMedCrossRefGoogle Scholar
  98. 98.
    Harton GL et al. ESHRE PGD consortium/embryology special interest group–best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod. 2011;26(1):41–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Donoso P, Devroey P. PGD for aneuploidy screening: an expensive hoax? Best Pract Res Clin Obstet Gynaecol. 2007;21(1):157–68.PubMedCrossRefGoogle Scholar
  100. 100.
    Twisk M et al. Preimplantation genetic screening for abnormal number of chromosomes (aneuploidies) in in vitro fertilisation or intracytoplasmic sperm injection. Cochrane Database Syst Rev. 2006;(1):CD005291Google Scholar
  101. 101.
    Twisk M et al. No beneficial effect of preimplantation genetic screening in women of advanced maternal age with a high risk for embryonic aneuploidy. Hum Reprod. 2008;23(12):2813–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Wells D. Embryo aneuploidy and the role of morphological and genetic screening. Reprod Biomed Online. 2010;21(3):274–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Debrock S, et al. Preimplantation genetic screening for aneuploidy of embryos after in vitro fertilization in women aged at least 35 years: a prospective randomized trial. Fertil Steril. 2009Google Scholar
  104. 104.
    Checa MA et al. IVF/ICSI with or without preimplantation genetic screening for aneuploidy in couples without genetic disorders: a systematic review and meta-analysis. J Assist Reprod Genet. 2009;26(5):273–83.PubMedCrossRefGoogle Scholar
  105. 105.
    Fritz MA. Perspectives on the efficacy and indications for preimplantation genetic screening: where are we now? Hum Reprod. 2008;23(12):2617–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Cohen J, Wells D, Munne S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril. 2007;87(3):496–503.PubMedCrossRefGoogle Scholar
  107. 107.
    Michiels A et al. The analysis of one or two blastomeres for PGD using fluorescence in-situ hybridization. Hum Reprod. 2006;21(9):2396–402.PubMedCrossRefGoogle Scholar
  108. 108.
    Goossens V et al. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod. 2008;23(3):481–92.PubMedCrossRefGoogle Scholar
  109. 109.
    Harton GL et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26(1):33–40.PubMedCrossRefGoogle Scholar
  110. 110.
    Harton GL et al. ESHRE PGD consortium best practice guidelines for fluorescence in situ hybridization-based PGD. Hum Reprod. 2011;26(1):25–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Kokkali G et al. Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of beta-thalassaemia: a pilot study. Hum Reprod. 2007;22(5):1443–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Schoolcraft WB et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94(5):1700–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Magli MC et al. The combination of polar body and embryo biopsy does not affect embryo viability. Hum Reprod. 2004;19(5):1163–9.PubMedCrossRefGoogle Scholar
  114. 114.
    DeUgarte CM et al. Accuracy of FISH analysis in predicting chromosomal status in patients undergoing preimplantation genetic diagnosis. Fertil Steril. 2008;90(4):1049–54.PubMedCrossRefGoogle Scholar
  115. 115.
    Agerholm IE et al. Sequential FISH analysis using competitive displacement of labelled peptide nucleic acid probes for eight chromosomes in human blastomeres. Hum Reprod. 2005;20(4):1072–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Gutierrez-Mateo C et al. Karyotyping of human oocytes by cenM-FISH, a new 24-colour centromere-specific technique. Hum Reprod. 2005;20(12):3395–401.PubMedCrossRefGoogle Scholar
  117. 117.
    Pellestor F et al. Fluorescence in situ hybridization analysis of human oocytes: advantages of a double-labeling procedure. Fertil Steril. 2004;82(4):919–22.PubMedCrossRefGoogle Scholar
  118. 118.
    Yan LY, et al. Application of three-dimensional fluorescence in situ hybridization to human preimplantation genetic diagnosis. Fertil Steril. 2008Google Scholar
  119. 119.
    Wells D, Alfarawati S, Fragouli E. Use of comprehensive chromosomal screening for embryo assessment: microarrays and CGH. Mol Hum Reprod. 2008;14(12):703–10.PubMedCrossRefGoogle Scholar
  120. 120.
    Fragouli E, et al. Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril. 2009Google Scholar
  121. 121.
    Pellestor F et al. Mechanisms of non-disjunction in human female meiosis: the co-existence of two modes of malsegregation evidenced by the karyotyping of 1397 in-vitro unfertilized oocytes. Hum Reprod. 2002;17(8):2134–45.PubMedCrossRefGoogle Scholar
  122. 122.
    Sandalinas M, Marquez C, Munne S. Spectral karyotyping of fresh, non-inseminated oocytes. Mol Hum Reprod. 2002;8(6):580–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Gutierrez-Mateo C et al. Aneuploidy study of human oocytes first polar body comparative genomic hybridization and metaphase II fluorescence in situ hybridization analysis. Hum Reprod. 2004;19(12):2859–68.PubMedCrossRefGoogle Scholar
  124. 124.
    Gutierrez-Mateo C et al. Reliability of comparative genomic hybridization to detect chromosome abnormalities in first polar bodies and metaphase II oocytes. Hum Reprod. 2004;19(9):2118–25.PubMedCrossRefGoogle Scholar
  125. 125.
    Wilton L et al. Preimplantation aneuploidy screening using comparative genomic hybridization or fluorescence in situ hybridization of embryos from patients with recurrent implantation failure. Fertil Steril. 2003;80(4):860–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Keskintepe L, Sher G, Keskintepe M. Reproductive oocyte/embryo genetic analysis: comparison between fluorescence in-situ hybridization and comparative genomic hybridization. Reprod Biomed Online. 2007;15(3):303–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Hellani A et al. Successful pregnancies after application of array-comparative genomic hybridization in PGS-aneuploidy screening. Reprod Biomed Online. 2008;17(6):841–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Rius M et al. Reliability of short comparative genomic hybridization in fibroblasts and blastomeres for a comprehensive aneuploidy screening: first clinical application. Hum Reprod. 2010;25(7):1824–35.PubMedCrossRefGoogle Scholar
  129. 129.
    Gutierrez-Mateo C, et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2010Google Scholar
  130. 130.
    Handyside AH et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47(10):651–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Treff NR et al. Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays. Fertil Steril. 2010;94(6):2017–21.PubMedCrossRefGoogle Scholar
  132. 132.
    Johnson DS et al. Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-h protocol. Hum Reprod. 2010;25(4):1066–75.PubMedCrossRefGoogle Scholar
  133. 133.
    Bonduelle M et al. Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters. Hum Reprod. 2002;17(10):2600–14.PubMedCrossRefGoogle Scholar
  134. 134.
    Sanchez-Castro M et al. Prognostic value of sperm fluorescence in situ hybridization analysis over PGD. Hum Reprod. 2009;24(6):1516–21.PubMedCrossRefGoogle Scholar
  135. 135.
    Kuznyetsov V et al. Duplication of the sperm genome by human androgenetic embryo production: towards testing the paternal genome prior to fertilization. Reprod Biomed Online. 2007;14(4):504–14.PubMedCrossRefGoogle Scholar
  136. 136.
    Lewis-Jones I et al. Sperm chromosomal abnormalities are linked to sperm morphologic deformities. Fertil Steril. 2003;79(1):212–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Dubey A et al. The influence of sperm morphology on preimplantation genetic diagnosis cycles outcome. Fertil Steril. 2008;89(6):1665–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Maille L et al. Pronuclear morphology differs between women more than 38 and women less than 30 years of age. Reprod Biomed Online. 2009;18(3):367–73.PubMedCrossRefGoogle Scholar
  139. 139.
    Gianaroli L et al. Oocyte euploidy, pronuclear zygote morphology and embryo chromosomal complement. Hum Reprod. 2007;22(1):241–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Noyes N et al. Embryo biopsy: the fate of abnormal pronuclear embryos. Reprod Biomed Online. 2008;17(6):782–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Rosenbusch B et al. Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Hum Reprod. 2002;17(9):2388–93.PubMedCrossRefGoogle Scholar
  142. 142.
    Edwards RG, Beard HK. Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod. 1997;3(10):863–905.PubMedCrossRefGoogle Scholar
  143. 143.
    Balaban B et al. Pronuclear morphology predicts embryo development and chromosome constitution. Reprod Biomed Online. 2004;8(6):695–700.PubMedCrossRefGoogle Scholar
  144. 144.
    Munne S, Tomkin G, Cohen J. Selection of embryos by morphology is less effective than by a combination of aneuploidy testing and morphology observations. Fertil Steril. 2009;91(3):943–5.PubMedCrossRefGoogle Scholar
  145. 145.
    Holte J et al. Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. Hum Reprod. 2007;22(2):548–57.PubMedCrossRefGoogle Scholar
  146. 146.
    Magli MC et al. Embryo morphology and development are dependent on the chromosomal complement. Fertil Steril. 2007;87(3):534–41.PubMedCrossRefGoogle Scholar
  147. 147.
    Moayeri SE et al. Day-3 embryo morphology predicts euploidy among older subjects. Fertil Steril. 2008;89(1):118–23.PubMedCrossRefGoogle Scholar
  148. 148.
    McKenzie LJ et al. Nuclear chromosomal localization in human preimplantation embryos: correlation with aneuploidy and embryo morphology. Hum Reprod. 2004;19(10):2231–7.PubMedCrossRefGoogle Scholar
  149. 149.
    Harper JC et al. ESHRE PGD consortium data collection V: cycles from January to December 2002 with pregnancy follow-up to October 2003. Hum Reprod. 2006;21(1):3–21.PubMedCrossRefGoogle Scholar
  150. 150.
    Harton G et al. ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum Reprod. 2011;26(1):14–24.PubMedCrossRefGoogle Scholar
  151. 151.
    Basille C et al. Preimplantation genetic diagnosis: state of the art. Eur J Obstet Gynecol Reprod Biol. 2009;145(1):9–13.PubMedCrossRefGoogle Scholar
  152. 152.
    Thornhill AR, Snow K. Molecular diagnostics in preimplantation genetic diagnosis. J Mol Diagn. 2002;4(1):11–29.PubMedCrossRefGoogle Scholar
  153. 153.
    Thornhill AR et al. ESHRE PGD consortium ‘best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)’. Hum Reprod. 2005;20(1):35–48.PubMedCrossRefGoogle Scholar
  154. 154.
    Guidelines for good practice in PGD: programme requirements and laboratory quality assurance. Reprod Biomed Online. 2008;16(1):134–47Google Scholar
  155. 155.
    Staessen C et al. Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod. 2008;23(12):2818–25.PubMedCrossRefGoogle Scholar
  156. 156.
    Hardarson T et al. Preimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trial. Hum Reprod. 2008;23(12):2806–12.PubMedCrossRefGoogle Scholar
  157. 157.
    Rubio C et al. The importance of good practice in preimplantation genetic screening: critical viewpoints. Hum Reprod. 2009;24(8):2045–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Knoppers BM, Bordet S, Isasi RM. Preimplantation genetic diagnosis: an overview of socio-ethical and legal considerations. Annu Rev Genomics Hum Genet. 2006;7:201–21.PubMedCrossRefGoogle Scholar
  159. 159.
    Fasouliotis SJ, Schenker JG. Preimplantation genetic diagnosis principles and ethics. Hum Reprod. 1998;13(8):2238–45.PubMedCrossRefGoogle Scholar
  160. 160.
    Collins JA et al. An estimate of the cost of in vitro fertilization services in the United States in 1995. Fertil Steril. 1995;64(3):538–45.PubMedGoogle Scholar
  161. 161.
    Collins J. Cost-effectiveness of in vitro fertilization. Semin Reprod Med. 2001;19(3):279–89.PubMedCrossRefGoogle Scholar
  162. 162.
    Mersereau JE, Plunkett BA, Cedars MI. Preimplantation genetic screening in older women: a cost-effectiveness analysis. Fertil Steril. 2008;90(3):592–8.PubMedCrossRefGoogle Scholar
  163. 163.
    ACOG Committee Opinion No. 430: preimplantation genetic screening for aneuploidy. Obstet Gynecol. 2009;113(3):766–7Google Scholar
  164. 164.
    Harper J et al. What next for preimplantation genetic screening (PGS)? a position statement from the ESHRE PGD consortium steering committee. Hum Reprod. 2010;25(4):821–3.PubMedCrossRefGoogle Scholar
  165. 165.
    Staessen C et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod. 2004;19(12):2849–58.PubMedCrossRefGoogle Scholar
  166. 166.
    Jansen RP et al. What next for preimplantation genetic screening (PGS)? experience with blastocyst biopsy and testing for aneuploidy. Hum Reprod. 2008;23(7):1476–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Mastenbroek S et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):9–17.PubMedCrossRefGoogle Scholar
  168. 168.
    Munne S, Wells D, Cohen J. Technology requirements for preimplantation genetic diagnosis to improve assisted reproduction outcomes. Fertil Steril. 2009Google Scholar
  169. 169.
    Scott RT, et al. A prospective randomized controlled trial demonstrating significantly increased clinical pregnancy rates following 24 chromosome aneuploidy screening: biopsy and analysis on day 5 with fresh transfer. Fertil Steril. 2010;94(S2)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kim Dao Ly
    • 1
    • 3
  • Ashok Agarwal
    • 1
  • Zsolt Peter Nagy
    • 2
  1. 1.Center for Reproductive Medicine, Cleveland ClinicClevelandUSA
  2. 2.Reproductive Biology AssociatesAtlantaUSA
  3. 3.Cleveland Clinic FoundationClevelandUSA

Personalised recommendations