Skip to main content

Advertisement

Log in

Protein tyrosine phosphatase non-receptor type 14 is a novel sperm-motility biomarker

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To understand the molecular basis of sperm-motility and to identify related novel motility biomarkers.

Methods

Two-dimensional electrophoresis (2DE) followed by Reverse-phase-nano-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (RP-nano-HPLC-ESI-MS/MS) were applied to establish the human sperm proteome. Then the sperm proteome of moderate-motile human sperm fraction and that of good-motile human sperm fraction from pooled spermatozoa of forty normozoospermic donors (Group 1 subjects) were compared to identify the dysregulated proteins. Among these down-regulated proteins, Protein tyrosine phosphatase non-receptor type 14 (PTPN14) was chosen to reconfirm by Western blotting and semi-quantitative reverse transcription polymerase chain reaction. For clinical application, Western blotting and real-time reverse transcription polymerase chain reaction was performed to compare the expression level of PTPN14 in (Group 2 subjects) nine normozoospermic controls and thirty-three asthenozoospermic patients (including 21 mild asthenozoospermic cases and 12 severe cases). Finally, bioinformatic tools prediction and immunofluorescence assay were performed to elucidate the potential localization of PTPN14.

Results

The expression levels of three proteins were observed to be lower in the moderate-motile sperm fraction than in good-motile sperm of group 1 subjects. Among three proteins with persistent down-regulation in the moderate-motile sperm, we reconfirmed that the expression level of PTPN14 was significantly lower in both mRNA and protein levels from the moderate-motile sperm fraction. Further, down-regulation of PTPN14 was found at the translational and transcriptional level in the asthenozoospermic men. Finally, Bioinformatic tools prediction and immunofluorescence assay showed that PTPN14 maybe predominantly localized at the mitochondria in the midpiece of human ejaculated sperm.

Conclusions

Proteomics tools were applied to identify three possible sperm motility-related proteins. Among these proteins, PTPN14 was highly likely a novel sperm-motility biomarker and a potential mitochondrial protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greenhall E, Vessey M. The prevalence of subfertility: a review of the current confusion and a report of two new studies. Fertil Steril. 1990;54:978–83.

    PubMed  CAS  Google Scholar 

  2. Boyle CA, Khoury MJ, Katz DF, Annest JL, Kresnow MJ, DeStefano F, et al. The relation of computer-based measures of sperm morphology and motility to male infertility. Epidemiology. 1992;3:239–46.

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organization. WHO, Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  4. Curi SM, Ariagno JI, Chenlo PH, Mendeluk GR, Pugliese MN, Sardi Segovia LM, et al. Asthenozoospermia: analysis of a large population. Arch Androl. 2003;49:343–9.

    Article  PubMed  CAS  Google Scholar 

  5. Leclerc P, de Lamirande E, Gagnon C. Interaction between Ca2+, cyclic 3′,5′ adenosine monophosphate, the superoxide anion, and tyrosine phosphorylation pathways in the regulation of human sperm capacitation. J Androl. 1998;19:434–43.

    PubMed  CAS  Google Scholar 

  6. Leclerc P, de Lamirande E, Gagnon C. Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med. 1997;22:643–56.

    Article  PubMed  CAS  Google Scholar 

  7. Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3′,5′monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod. 1996;55:684–92.

    Article  PubMed  CAS  Google Scholar 

  8. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development. 1995;121:1139–50.

    PubMed  CAS  Google Scholar 

  9. Lin M, Lee YH, Xu W, Baker MA, Aitken RJ. Ontogeny of tyrosine phosphorylation-signaling pathways during spermatogenesis and epididymal maturation in the mouse. Biol Reprod. 2006;75:588–97.

    Article  PubMed  CAS  Google Scholar 

  10. de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14:157–66.

    Article  PubMed  Google Scholar 

  11. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci. 1995;108(Pt 5):2017–25.

    PubMed  CAS  Google Scholar 

  12. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995;18:487–95.

    Article  PubMed  Google Scholar 

  13. Aitken RJ, Harkiss D, Knox W, Paterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998;111(Pt 5):645–56.

    PubMed  CAS  Google Scholar 

  14. Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci. 2006;119:3182–92.

    Article  PubMed  CAS  Google Scholar 

  15. Lewis B, Aitken RJ. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J Androl. 2001;22:611–22.

    PubMed  CAS  Google Scholar 

  16. Hecht D, Zick Y. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun. 1992;188:773–9.

    Article  PubMed  CAS  Google Scholar 

  17. Nolan MA, Babcock DF, Wennemuth G, Brown W, Burton KA, McKnight GS. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci USA. 2004;101:13483–8.

    Article  PubMed  CAS  Google Scholar 

  18. Holt WV, Harrison RA. Bicarbonate stimulation of boar sperm motility via a protein kinase A-dependent pathway: between-cell and between-ejaculate differences are not due to deficiencies in protein kinase A activation. J Androl. 2002;23:557–65.

    PubMed  CAS  Google Scholar 

  19. Lawson C, Goupil S, Leclerc P. Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium. Biol Reprod. 2008;79:657–66.

    Article  PubMed  CAS  Google Scholar 

  20. Martinez-Heredia J, Estanyol JM, Ballesca JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics. 2006;6:4356–69.

    Article  PubMed  CAS  Google Scholar 

  21. de Mateo S, Martinez-Heredia J, Estanyol JM, Dominguez-Fandos D, Vidal-Taboada JM, Ballesca JL, et al. Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics. 2007;7:4264–77.

    Article  PubMed  Google Scholar 

  22. Zhao C, Huo R, Wang FQ, Lin M, Zhou ZM, Sha JH. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil Steril. 2007;87:436–8.

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Heredia J, de Mateo S, Vidal-Taboada JM, Ballesca JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod. 2008;23:783–91.

    Article  PubMed  CAS  Google Scholar 

  24. Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, et al. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod. 2010;16:452–62.

    Article  PubMed  CAS  Google Scholar 

  25. Chan CC, Shui HA, Wu CH, Wang CY, Sun GH, Chen HM, et al. Motility and protein phosphorylation in healthy and asthenozoospermic sperm. J Proteome Res. 2009;8:5382–6.

    Article  PubMed  CAS  Google Scholar 

  26. White DR, Phillips DM, Bedford JM. Factors affecting the acrosome reaction in human spermatozoa. J Reprod Fertil. 1990;90:71–80.

    Article  PubMed  CAS  Google Scholar 

  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  28. Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA. 1996;93:14440–5.

    Article  PubMed  CAS  Google Scholar 

  29. Tyan YC, Wu HY, Su WC, Chen PW, Liao PC. Proteomic analysis of human pleural effusion. Proteomics. 2005;5:1062–74.

    Article  PubMed  CAS  Google Scholar 

  30. Bauer MF, Hofmann S, Neupert W, Brunner M. Protein translocation into mitochondria: the role of TIM complexes. Trends Cell Biol. 2000;10:25–31.

    Article  PubMed  CAS  Google Scholar 

  31. Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, et al. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem. 2003;278:11579–89.

    Article  PubMed  CAS  Google Scholar 

  32. Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst Biol. 2008;2:19.

    Article  PubMed  Google Scholar 

  33. Gonzalez-Fernandez L, Ortega-Ferrusola C, Macias-Garcia B, Salido GM, Pena FJ, Tapia JA. Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation. Biol Reprod. 2009;80:1239–52.

    Article  PubMed  CAS  Google Scholar 

  34. Carra E, Sangiorgi D, Gattuccio F, Rinaldi AM. Male infertility and mitochondrial DNA. Biochem Biophys Res Commun. 2004;322:333–9.

    Article  PubMed  CAS  Google Scholar 

  35. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60.

    Article  PubMed  CAS  Google Scholar 

  36. Guo X, Zhao C, Wang F, Zhu Y, Cui Y, Zhou Z, et al. Investigation of human testis protein heterogeneity using 2-dimensional electrophoresis. J Androl. 2010;31:419–29.

    Article  PubMed  CAS  Google Scholar 

  37. Bohring C, Krause E, Habermann B, Krause W. Isolation and identification of sperm membrane antigens recognized by antisperm antibodies, and their possible role in immunological infertility disease. Mol Hum Reprod. 2001;7:113–8.

    Article  PubMed  CAS  Google Scholar 

  38. Bohring C, Krause W. The characterization of human spermatozoa membrane proteins–surface antigens and immunological infertility. Electrophoresis. 1999;20:971–6.

    Article  PubMed  CAS  Google Scholar 

  39. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  PubMed  CAS  Google Scholar 

  40. Edwards K, Davis T, Marcey D, Kurihara J, Yamamoto D. Comparative analysis of the Band 4.1/ezrin-related protein tyrosine phosphatase Pez from two Drosophila species: implications for structure and function. Gene. 2001;275:195–205.

    Article  PubMed  CAS  Google Scholar 

  41. Ogata M, Takada T, Mori Y, Uchida Y, Miki T, Okuyama A, et al. Regulation of phosphorylation level and distribution of PTP36, a putative protein tyrosine phosphatase, by cell-substrate adhesion. J Biol Chem. 1999;274:20717–24.

    Article  PubMed  CAS  Google Scholar 

  42. Tsukita S, Yonemura S, Tsukita S. ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem Sci. 1997;22:53–8.

    Article  PubMed  CAS  Google Scholar 

  43. Ogata M, Takada T, Mori Y, Oh-hora M, Uchida Y, Kosugi A, et al. Effects of overexpression of PTP36, a putative protein tyrosine phosphatase, on cell adhesion, cell growth, and cytoskeletons in HeLa cells. J Biol Chem. 1999;274:12905–9.

    Article  PubMed  CAS  Google Scholar 

  44. Barr AJ, Debreczeni JE, Eswaran J, Knapp S. Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution. Proteins. 2006;63:1132–6.

    Article  PubMed  CAS  Google Scholar 

  45. Wadham C, Gamble JR, Vadas MA, Khew-Goodall Y. Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J Cell Sci. 2000;113(Pt 17):3117–23.

    PubMed  CAS  Google Scholar 

  46. Tash JS, Bracho GE. Regulation of sperm motility: emerging evidence for a major role for protein phosphatases. J Androl. 1994;15:505–9.

    PubMed  CAS  Google Scholar 

  47. Han Y, Haines CJ, Feng HL. Role(s) of the serine/threonine protein phosphatase 1 on mammalian sperm motility. Arch Androl. 2007;53:169–77.

    Article  PubMed  CAS  Google Scholar 

  48. Devi KU, Jha K, Shivaji S. Plasma membrane-associated protein tyrosine phosphatase activity in hamster spermatozoa. Mol Reprod Dev. 1999;53:42–50.

    Article  PubMed  CAS  Google Scholar 

  49. Tomes CN, Roggero CM, De Blas G, Saling PM, Mayorga LS. Requirement of protein tyrosine kinase and phosphatase activities for human sperm exocytosis. Dev Biol. 2004;265:399–415.

    Article  PubMed  CAS  Google Scholar 

  50. Seligman J, Zipser Y, Kosower NS. Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa. Biol Reprod. 2004;71:1009–15.

    Article  PubMed  CAS  Google Scholar 

  51. Swarbrick MM, Havel PJ, Levin AA, Bremer AA, Stanhope KL, Butler M, et al. Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology. 2009;150:1670–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by grants from the National Science Council of the Republic of China (NSC- 91-2314-B-006-149, NSC 91-3112-B-006-008, NSC 92-3112-B-006-002, NSC 93-3112-B-006-004, and NSC 93-2314-B-006-078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Chin Hsu.

Additional information

Capsule

Protein tyrosine phosphatase non-receptor type 14 is a novel sperm-motility biomarker proven by proteomic tools.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

Parameters for good-motility and moderate-motility sperm fractions which were separated by density gradients and used for proteomics study. (DOC 29 kb)

Supplemental Table 2

Sperm parameters of normozoospermic controls and men with asthenozoospermia. (DOC 30 kb)

Supplemental Table 3

Proteins which are persistently under-expressed in moderate-motility sperm. (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, HC.A., Chung, CL., Pan, HA. et al. Protein tyrosine phosphatase non-receptor type 14 is a novel sperm-motility biomarker. J Assist Reprod Genet 28, 851–861 (2011). https://doi.org/10.1007/s10815-011-9602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9602-0

Keywords

Navigation