Skip to main content

Advertisement

Log in

A potential use of embryonic stem cell medium for the in vitro culture of preimplantation embryos

  • Technical Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess the impact of embryonic stem cell culture medium (ESCM) on the pre- and post-implantation development of the mouse embryo, as a mammalian model, in comparison with the conventional culture medium, a potassium simplex optimized medium (KSOM).

Methods

Development in ESCM versus KSOM was compared in terms of embryo morphology, cleavage, cavitation, hatching, cell number, expression of TE and ICM transcription factors (Cdx2 and Oct4, respectively), implantation, and development in utero.

Results

An enriched medium like ESCM can be beneficial for in vitro embryo development when cultured from the 8-cell stage, as evidenced by promotion of blastocyst development with respect to cavity expansion, hatching, and cell division. Such benefits were not observed when embryos were cultured from the 2-cell stage.

Conclusions

ESCM may augment in vitro embryo development from the 8-cell stage. Using different culture media at different stages may be beneficial to achieve more effective human in vitro fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whitten WK. Culture of tubal ova. Nature. 1956;177:96.

    Article  PubMed  CAS  Google Scholar 

  2. McLaren A, Biggers JD. Successful development and birth of mice cultivated in vitro as early embryos. Nature. 1958;182:877–8.

    Article  PubMed  CAS  Google Scholar 

  3. Chang MC. Fertilization of rabbit ova in vitro. Nature. 1959;193:466–7.

    Article  Google Scholar 

  4. Lawitts JA, Biggers JD. Overcoming the 2-cell block by modifying standard components in a mouse embryo culture medium. Biol Reprod. 1991;45:245–51.

    Article  PubMed  CAS  Google Scholar 

  5. Lawitts JA, Biggers JD. Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil. 1991;91:543–56.

    Article  PubMed  CAS  Google Scholar 

  6. Lawitts JA, Biggers JD. Culture of preimplantation embryos. Meth Enzymol. 1993;225:153–64.

    Article  PubMed  CAS  Google Scholar 

  7. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.

    Article  PubMed  CAS  Google Scholar 

  8. Gardner DK, Lane M. Embryo culture system. In: Gardner DK, editor. In vitro fertilization: a practical approach. New York: Informa Healthcare USA Inc.; 2007.

    Google Scholar 

  9. Schultz RM, Williams CJ. The science of ART. Science. 2002;296:2188–90.

    Article  PubMed  CAS  Google Scholar 

  10. Centers for Disease Control and Prevention, American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. 2008 Assisted Reproductive Technology Success Rates: National Summary and Fertility Clinic Reports. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2010.

  11. Gardner DK, Lane M, Schoolcraft WB. Culture and transfer of viable blastocysts: a feasible proposition for human IVF. Hum Reprod. 2000;15 Suppl 6:9–23.

    PubMed  Google Scholar 

  12. Milki AA, Hinckley MD, Fisch JD, Dasig D, Behr B. Comparison of blastocyst transfer with day 3 embryo transfer in similar patient populations. Fertil Steril. 2000;73:126–9.

    Article  PubMed  CAS  Google Scholar 

  13. Barratt CL. St John JC, Afnan M. Clinical challenges in providing embryos for stem-cell initiatives. Lancet. 2004;364:115–8.

    Article  PubMed  Google Scholar 

  14. Hardy K, Spanos S, Becker D, Iannelli P, Winston RML, Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci USA. 2001;98:1655–60.

    Article  PubMed  CAS  Google Scholar 

  15. Behr B. Blastocyst culture and transfer. Hum Reprod. 1999;14:5–6.

    Article  PubMed  CAS  Google Scholar 

  16. Jun SH, Choi B, Westphal L, Behr B, Reijo Pera RA, Wong WH, et al. Defining human embryo phenotypes with cohort-specific prognostic factors in in vitro fertilization. PLoS ONE. 2008;3:e2562.

    Article  PubMed  Google Scholar 

  17. Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ. 2006;174:341–8.

    Article  PubMed  Google Scholar 

  18. Cox CF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71:162–4.

    Article  PubMed  CAS  Google Scholar 

  19. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of L1T1 and H19. Am J Hum Genet. 2003;72:156–60.

    Article  PubMed  CAS  Google Scholar 

  20. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet. 2003;72:1338–41.

    Article  PubMed  CAS  Google Scholar 

  21. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet. 2003;40:62–4.

    Article  PubMed  CAS  Google Scholar 

  22. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  23. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78:7634–8.

    Article  PubMed  CAS  Google Scholar 

  24. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  25. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115:281–92.

    Article  PubMed  CAS  Google Scholar 

  26. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1988;336:688–90.

    Article  PubMed  CAS  Google Scholar 

  27. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336:684–7.

    Article  PubMed  CAS  Google Scholar 

  28. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–7.

    Article  PubMed  CAS  Google Scholar 

  29. Amit M, Carpenter MK, Inokuma MS, Chiu C, Harris CP, Maknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227:271–8.

    Article  PubMed  CAS  Google Scholar 

  30. Alarcon VB, Marikawa Y. Deviation of the blastocyst axis from the first cleavage plane does not affect the quality of mouse postimplantation development. Biol Reprod. 2003;83:347–58.

    Article  Google Scholar 

  31. Alarcon VB. Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod. 2010;69:1208–12.

    Article  Google Scholar 

  32. Kusakabe H, Szczygiel MA, Whittingham DG, Yanagimachi R. Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc Natl Acad Sci USA. 2001;98:13501–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ward MA, Kaneko T, Kusakabe H, Biggers JD, Whittingham DG, Yanagimachi R. Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. Biol Reprod. 2003;69:2100–8.

    Article  PubMed  CAS  Google Scholar 

  34. Nichols J, Zevnick B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.

    Article  PubMed  CAS  Google Scholar 

  35. Niwa H, Miyazaki J, Smith A. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2004;24:372–6.

    Article  Google Scholar 

  36. Strumpf D, Mao C, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132:2093–102.

    Article  PubMed  CAS  Google Scholar 

  37. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA. 1967;58:560–7.

    Article  PubMed  CAS  Google Scholar 

  38. Biggers JD, Gardner DK, Leese HJ. Control of carbohydrate metabolism in preimplantation mammalian embryos. In: Rosenblum IY, Heyner S, editors. Regulation of growth in development. Boca Raton: CRC Press; 1989. p. 19–32.

    Google Scholar 

  39. Kim JH, Funahashi H, Niwa K, Okuda K. Glucose requirement at different developmental stages of in-vitro fertilised bovine embryos cultured in semi-defined medium. Theriogenology. 1993;39:875–86.

    Article  PubMed  CAS  Google Scholar 

  40. Conaghan J, Handyside AH, Winston RML, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil. 1993;99:87–95.

    Article  PubMed  CAS  Google Scholar 

  41. Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology. 1998;49:83–102.

    Article  PubMed  CAS  Google Scholar 

  42. Brinster RL. Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil. 1965;10:227–40.

    Article  PubMed  CAS  Google Scholar 

  43. Gardner DK, Leese HJ. Non-invasive measurement of nutrient uptake by single cultured preimplantation mouse embryos. Hum Reprod. 1986;1:25–7.

    PubMed  CAS  Google Scholar 

  44. Hardy K, Hooper MAK, Handyside AH, Rutherford AJ, Winston RML, Leese HJ. Noninvasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod. 1989;4:188–91.

    PubMed  CAS  Google Scholar 

  45. Gardner DK, Lane M, Batt PA. The uptake and metabolism of pyruvate and glucose by individual pre-attachment sheep embryos developed in vivo. Mol Reprod Dev. 1993;36:313–9.

    Article  PubMed  CAS  Google Scholar 

  46. Lane M, Gardner DK. Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum Reprod. 1998;13:991–7.

    Article  PubMed  CAS  Google Scholar 

  47. Barnett DK, Bavister BD. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Hum Reprod. 1996;11:177–83.

    PubMed  CAS  Google Scholar 

  48. Abramczuk J, Solter D, Koprowski H. The beneficial effect of EDTA on development of mouse one-cell embryos in chemically defined medium. Dev Biol. 1977;61:378–83.

    Article  PubMed  CAS  Google Scholar 

  49. Gardner DK, Lane M. Alleviation of the 2-cell block and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod. 1996;11:2703–12.

    PubMed  CAS  Google Scholar 

  50. Matsukawa T, Ikeda S, Imai H, Yamada M. Alleviation of the two-cell block of ICR mouse embryos by polyaminocarboxylate metal chelators. Reproduction. 2002;124:65–71.

    Article  PubMed  CAS  Google Scholar 

  51. Richter KS. The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr Opin Obstet Gynecol. 2008;20:292–304.

    Article  PubMed  Google Scholar 

  52. Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Dev Biol. 1990;87:4756–60.

    CAS  Google Scholar 

  53. Haimovici F, Anderson DJ. Effects of growth factors and growth factor-extracellular matrix interactions on mouse trophoblast outgrowth in vitro. Biol Reprod. 1993;49:124–30.

    Article  PubMed  CAS  Google Scholar 

  54. Harvey MB, Kaye PL. Insulin-like growth factor-1 stimulates growth of mouse preimplantation embryos in vitro. Mol Reprod Dev. 1992;31:195–9.

    Article  PubMed  CAS  Google Scholar 

  55. Chia CM, Winston RM, Handyside AH. EGF, TGF-alpha and EGFR expression in human preimplantation embryos. Development. 1995;121:299–307.

    PubMed  CAS  Google Scholar 

  56. Sharkey AM, Dellow K, Blayney M, Macnamee M, Charnock-Jones S, Smith SK. Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos. Biol Reprod. 1995;53:974–81.

    Article  PubMed  CAS  Google Scholar 

  57. Smotrich DB, Stillman RJ, Widra EA, Gindoff PR, Kaplan P, Graubert M, et al. Immunocytochemical localization of growth factors and their receptors in human pre-embryos and Fallopian tubes. Hum Reprod. 1996;11:184–90.

    PubMed  CAS  Google Scholar 

  58. Osterlund C, Wramsby H, Pousette A. Temporal expression of platelet-derived growth factor (PDGF)-A and its receptor in human preimplantation embryos. Mol Hum Reprod. 1996;2:507–12.

    Article  PubMed  CAS  Google Scholar 

  59. Lighten AD, Hardy K, Winston RM, Moore GE. Expression of mRNA for the insulin-like growth factors and their receptors in human preimplantation embryos. Mol Reprod Dev. 1997;47:134–9.

    Article  PubMed  CAS  Google Scholar 

  60. Moller B, Rasmussen C, Lindblom B, Olovsson M. Expression of the angiogenic growth factors VEGF, FGF-2, EGF and their receptors in normal human endometrium during the menstrual cycle. Mol Hum Reprod. 2001;7:65–72.

    Article  PubMed  CAS  Google Scholar 

  61. Watson R, Anthony F, Pickett M, Lambden P, Masson GM, Thomas EJ. Reverse transcription with nested polymerase chain reaction shows expression of basic fibroblast growth factor transcripts in human granulosa and cumulus cells from in vitro fertilisation patients. Biochem Biophys Res Commun. 1992;187:1227–31.

    Article  PubMed  CAS  Google Scholar 

  62. Di Blasio AM, Vigano P, Cremonesi L, Carniti C, Ferrari M, Ferrari A. Expression of the genes encoding basic fibroblast growth factor and its receptor in human granulosa cells. Mol Cell Endocrinol. 1993;96:R7–R11.

    Article  PubMed  Google Scholar 

  63. Muttukrishna S, Groome N, Ledger W. Gonadotropic control of secretion of dimeric inhibins and activin A by human granulosa-luteal cells in vitro. J Assist Reprod Genet. 1997;14:566–74.

    Article  PubMed  CAS  Google Scholar 

  64. Piccinni MP, Scaletti C, Mavilia C, Lazzeri E, Romagnani P, Natali I, et al. Production of IL-4 and leukemia inhibitory factor by T cells of the cumulus oophorus: a favorable microenvironment for preimplantation embryo development. Eur J Immunol. 2001;31:2431–7.

    Article  PubMed  CAS  Google Scholar 

  65. Svalander PC, Holmes PV, Olovsson M, Wikland M, Gemzell-Danielsson K, Bygdeman M. Platelet-derived growth factor is detected in human blastocyst culture medium but not in human follicular fluid - a preliminary report. Fertil Steril. 1991;56:367–9.

    PubMed  CAS  Google Scholar 

  66. Zolti M, Ben-Rafael Z, Meirom R, Shemesh M, Bider D, Mashiach S, et al. Cytokine involvement in oocytes and early embryos. Fertil Steril. 1991;56:265–72.

    PubMed  CAS  Google Scholar 

  67. Hemmings R, Langlais J, Falcone T, Granger L, Miron P, Guyda H. Human embryos produce transforming growth factors alpha activity and insulin-like growth factors II. Fertil Steril. 1992;58:101–4.

    PubMed  CAS  Google Scholar 

  68. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359:76–9.

    Article  PubMed  CAS  Google Scholar 

  69. Dimitriadis E, Stoikos C, Stafford-Bell M, Clark I, Paiva P, Kovacs G, et al. Interleukin-11, IL-11 receptor alpha and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window. J Reprod Immunol. 2006;69:53–64.

    Article  PubMed  CAS  Google Scholar 

  70. Gardner DK, Schoolcraft WB, Wagley L, Schlenker T, Stevens J, Hesla J. A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod. 1998;13:3434–40.

    Article  PubMed  CAS  Google Scholar 

  71. Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOMAA medium: is a two-step protocol necessary? Reprod Biomed Online. 2002;5:133–40.

    Article  PubMed  Google Scholar 

  72. Macklon NS, Pieters MHEC, Hassan MA, Jeucken PHM, Eijkemans MJC, Fauser BCJM. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod. 2002;17:2700–5.

    Article  PubMed  CAS  Google Scholar 

  73. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.

    Article  PubMed  Google Scholar 

  74. Reed ML, Hamic A, Thompson DJ, Caperton CL. Continuous uninterrupted single medium culture without medium renewal versus sequential media culture: a sibling embryo study. Fertil Steril. 2009;92:1783–6.

    Article  PubMed  Google Scholar 

  75. Paternot G, Debrock S, D’Hooghe TM, Spiessens C. Early embryo development in a sequential versus single medium: a randomized study. Reprod Biol Endocrin. 2010;8:83.

    Article  Google Scholar 

  76. Wu G, Gentile L, Do JT, Cantz T, Sutter J, Psathaki K, et al. Efficient Derivation of Pluripotent Stem Cells from siRNA-Mediated Cdx2-Deficient Mouse Embryos. Stem Cells Dev 2011;20:485–93.

    Google Scholar 

  77. Ralston A, Rossant J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol. 2008;313:614–29.

    Article  PubMed  CAS  Google Scholar 

  78. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62:1526–35.

    Article  PubMed  CAS  Google Scholar 

  79. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WMIII, Biniszkiewicz D, et al. Epigenetic instability in ES cells and cloned mice. Science. 2001;293:95–7.

    Article  PubMed  CAS  Google Scholar 

  80. Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64:918–26.

    Article  PubMed  CAS  Google Scholar 

  81. Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–4.

    Article  PubMed  CAS  Google Scholar 

  82. Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18:3769–78.

    Article  PubMed  CAS  Google Scholar 

  83. Ecker DJ, Stein P, Xu Z, Williams CJ, Kopf GS, Bilker WB, et al. Long-term effects of culture of preimplantation mouse embryos on behavior. Proc Natl Acad Sci USA. 2004;101:1595–600.

    Article  PubMed  CAS  Google Scholar 

  84. Fernandez-Gonzalez R, Moreira PN, Perez-Crespo M, Sanchez-Martin M, Ramirez MA, Pericuesta E, et al. Long term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78:761–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grants (P20RR024206 to VBA; G12RR003061 and P20RR016453 to the JABSOM Imaging Core).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Marikawa.

Additional information

Capsule

Blastocyst development is enhanced when embryos are cultured from the 8-cell stage in the embryonic stem cell culture medium, compared to conventional KSOM medium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelber, K., Tamura, A.N., Alarcon, V.B. et al. A potential use of embryonic stem cell medium for the in vitro culture of preimplantation embryos. J Assist Reprod Genet 28, 659–668 (2011). https://doi.org/10.1007/s10815-011-9587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9587-8

Keywords

Navigation