Skip to main content
Log in

Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells

  • Stem cell biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study is to compare the ability of homologous and heterologous embryonic fibroblast feeder layers to support isolation and proliferation of buffalo ES-like cells generated from hatched and expanded blastocysts produced by in vitro fertilization and characterization of derived cells through expression of pluripotent markers.

Methods

Embryonic stem cells were derived from hatched and expanded blastocysts through intact blastocyst culture and enzymatic method respectively and compared for proliferation rate on homologous (buffalo) and heterologous feeder layers (goat and sheep).

Results

A total of 69 hatched and 83 expanded blastocysts were used for isolation of inner cell masses which were seeded on buffalo, goat and sheep embryonic feeder layers. Following seeding, attachment rate, primary colony formation rate and survival to maximum number of passages were observed to be higher on homologous feeder layers.

Conclusions

Upon comparison of different feeder layer cells for derivation and maintenance of buffalo ES-like cells from hatched and expanded blastocysts, buffalo embryonic fibroblast cells were able to provide a better environment for maintaining pluripotency in culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  2. Pease S, Braghetta P, Gearing D, Grail D, Williams RL. Isolation of embryonic stem (ES) cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol. 1990;141:344–52.

    Article  PubMed  CAS  Google Scholar 

  3. Williams RL, Hilton DJ, Pease S, Wilson TA, Stewart CL, Gearing DP, et al. Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336:684–7.

    Article  PubMed  CAS  Google Scholar 

  4. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404.

    Article  PubMed  CAS  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  6. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971–4.

    Article  PubMed  CAS  Google Scholar 

  7. Amit M, Shariki C, Margulets V, Itskovit-Eldor J. Feeder layer and serum-free culture of human embryonic stem cells. Biol Reprod. 2004;70:837–45.

    Article  PubMed  CAS  Google Scholar 

  8. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cell lines. Nat Biotechnol. 2002;18:399–404.

    Google Scholar 

  9. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells. 2003;21:546–56.

    Article  PubMed  CAS  Google Scholar 

  10. Brevini TAL, Antonini S, Cillo F, Crestan M, Gandolfi F. Porcine embryonic stem cells: facts, challenges and hopes. Theriogenology. 2007;68:206–13.

    Article  Google Scholar 

  11. Talbot NC, Rexroad Jr CE, Pursel VG, Powell AM, Nell ND. Culturing the epiblast cells of the pig blastocyst. In Vitro Cell Dev Biol Anim. 1993;29A:543–54.

    Article  PubMed  CAS  Google Scholar 

  12. Talbot NC, Powell AM, Rexroad Jr CE. In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol Reprod Dev. 1995;42:35–52.

    Article  PubMed  CAS  Google Scholar 

  13. Keefer CL, Plant D, Blomberg L, Talbot NC. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci. 2007;98:147–68.

    Article  PubMed  CAS  Google Scholar 

  14. Wolf DP, Kuo HC, Pau K-YF, Lester L. Progress with non-human primate embryonic stem cells. Biol Reprod. 2004;71:1766–7.

    Article  PubMed  CAS  Google Scholar 

  15. Li T, Wang S, Xie Y, Lu Y, Zhang X, Wang L, et al. Homologous feeder cells support undifferentiated growth and pluripotency in monkey embryonic stem cells. Stem Cells. 2005;23:1192–9.

    Article  PubMed  CAS  Google Scholar 

  16. Verma V, Guatam SK, Singh B, Manik RS, Palta P, Singla SK, et al. Isolation and characterization of embryonic stem cell- like cells in vitro-produced buffalo (Bubalus bubalis) embryos. Mol Reprod Dev. 2007;74:520–9.

    Article  PubMed  CAS  Google Scholar 

  17. Anand T, Kumar D, Singh MK, Chauhan MS, Manik RS, Singla SK, et al. Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency related antigens. Reprod Domest Anim. 2011;46(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  18. Kumar D, Palta P, Manik RS, Singla SK, Chauhan MS. Effect of culture media and serum supplementation on the development of in vitro fertilized buffalo embryos. Indian J Anim Sci. 2007;77:697–701.

    Google Scholar 

  19. Sukoyan MA, Votalin SY, Golubitsa AN, Zhelezova AI, Semenova LA, Serov OL. Embryonic stem cells derived from morula, inner cell mass, and blastocysts of mink: comparison of their pluripotencies. Mol Reprod Dev. 1993;36:148–58.

    Article  PubMed  CAS  Google Scholar 

  20. Yousef A, Selwood L. The type and differentiation of cells in vitro from unilaminar and bilaminar blastocysts of two marsupials, Antechinus stuartii and Sminthopsis macroura. Reprod Fertil Dev. 1996;8:743–52.

    Article  PubMed  CAS  Google Scholar 

  21. Carpenter MK, Rosler E, Rao MS. Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells. 2003;5:79–88.

    Article  PubMed  CAS  Google Scholar 

  22. Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y. Morula derived human embryonic stem cells. Reprod Biol Med Online. 2004;9:623–9.

    Article  Google Scholar 

  23. Xu C, Rosler E, Jiang J, Lebrowski JS, Gold JD, O’Sullivan C, et al. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells. 2005;23:315–23.

    Article  PubMed  CAS  Google Scholar 

  24. Prelle K, Zink N, Wolf E. Pluripotent stem cells-model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat Histol Embryol. 2002;31:169–86.

    Article  PubMed  Google Scholar 

  25. Li M, Ma W, Hou Y, Sun XF, Sun QY, Wang WH. Improved isolation and culture of embryonic stem cells from Chinese miniature pig. J Reprod Dev. 2004;50:237–44.

    Article  PubMed  Google Scholar 

  26. Chauhan MS, Verma V, Manik RS, Palta P, Singla SK, Goswami SL. Development of inner cell mass and formation of embryoid bodies on a gelatin-coated dish and on the feeder layer in buffalo (Bubalus bubalis). Reprod Fertil Dev. 2006;18:205–6.

    Article  Google Scholar 

  27. Piedrahita JA, Anderson GB, BonDurant RH. Influence of feeder layer type on the the efficiency of isolation of porcine embryo-derived cell lines. Theriogenology. 1990;34:865–77.

    Article  PubMed  CAS  Google Scholar 

  28. Petitte JN, Liu G, Yang Z. Avian pluripotent stem cells. Mech Dev. 2004;121:1159–68.

    Article  PubMed  CAS  Google Scholar 

  29. Horiuchi H, Tategaki A, Yamashita Y, Hisamatsu H, Ogawa M, Noguchi T, et al. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in an undifferentiated state. J Biol Chem. 2004;279:24514–20.

    Article  PubMed  CAS  Google Scholar 

  30. Gómez MC, Serrano MA, Earle PC, Jenkins JA, Biancardi MN, López M, et al. Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. Theriogenology. 2010;74:498–515.

    Article  PubMed  Google Scholar 

  31. Gjørret JO, Maddox-Hyttel P. Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reprod Fertil Dev. 2005;17:113–24.

    PubMed  Google Scholar 

  32. Kitiyanant Y, Saikhun J, Guocheng J, Pavasuthipaisit K. Establishment and long-term maintenance of bovine embryonic stem cell lines using mouse and bovine mixed feeder cells and their survival after cryopresevation. Sci Asia. 2000;26:81–6.

    Article  Google Scholar 

  33. Wilcox JT, Semple E, Gartley C, Brisson BA, Perrault SD, Villagómez DAF, et al. Characterization of canine embryonic stem cell lines derived from different niche microenvironments. Stem Cells Dev. 2009;18:1–12.

    Article  Google Scholar 

  34. Kawase E, Yoshimizu T, Hashimoto K. Effect of feeder cells on the establishment of ES cells from mice and rats: difference between allogenic and xenogenic feeders. J Reprod Dev. 2000;26:15–22.

    Article  Google Scholar 

  35. Chen LR, Shiue YL, Bertolini L, Medrano JF, BonDurant RH, Anderson GB. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology. 1999;52:195–212.

    Article  PubMed  CAS  Google Scholar 

  36. Stojkovic M, Lako M, Stojkovic P, Stewart R, Przyborski S, Evans J, et al. Derivation of human embryonic stem cells from day 8 blastocysts recovered after three-step in vitro culture. Stem Cells. 2004;22:790–7.

    Article  PubMed  Google Scholar 

  37. Sritanaudomchai H, Pavasuthipasit K, Kitiyanant Y, Kupradinum P, Mitalipov S, Kusamran T. Characterization and multilenease differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo. Mol Reprod Dev. 2007;74:1295–302.

    Article  PubMed  CAS  Google Scholar 

  38. Miyoshi K, Taguchi Y, Sendai Y, Hoshi H, Sato E. Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biol Reprod. 2000;62:1640–6.

    Article  PubMed  CAS  Google Scholar 

  39. Gerfen RW, Wheeler MB. Isolation of embryonic cell-lines from porcine blastocysts. Anim Biotechnol. 1995;6:1–14.

    Article  Google Scholar 

  40. Yu X, Jin G, Yin X, Cho S, Jeon J, Lee S, et al. Isolation and characterization of embryonic stem-like cells derived from in vivo-produced cat blastocysts. Mol Reprod Dev. 2008;75:1426–32.

    Article  PubMed  CAS  Google Scholar 

  41. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science. 2002;298:601–4.

    Article  PubMed  CAS  Google Scholar 

  42. Yadav PS, Wilfried AK, Herrmann D, Carnwath JW, Niemann H. Bovine ICM derived cells express Oct4 ortholog. Mol Reprod Dev. 2005;72:182–90.

    Article  PubMed  CAS  Google Scholar 

  43. Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K, Wijewardana V, et al. Isolation and characterization of embryonic stem-like cells from canine blastocysts. Mol Reprod Dev. 2006;73:298–305.

    Article  PubMed  CAS  Google Scholar 

  44. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–6.

    Article  PubMed  CAS  Google Scholar 

  45. Chau KM, First NL, Beyhan Z. Analysis of Oct-4 gene expression in in vitro cultured bovine blastocysts. SRP Biology. 2002;21–5.

  46. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.

    Article  PubMed  CAS  Google Scholar 

  47. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar.

Additional information

Capsule

Influence of the different type of feeder layers and isolation methods on the derivation of buffalo embryonic stem cells from hatched and expanded blastocysts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, D., Anand, T., Singh, K.P. et al. Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. J Assist Reprod Genet 28, 679–688 (2011). https://doi.org/10.1007/s10815-011-9572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9572-2

Keywords

Navigation