Skip to main content
Log in

Developmental competence of antral follicles and their oocytes after gonadotrophin treatment of sows with gene polymorphisms for leptin and melanocortin receptors (Iberian pig)

  • Gamete biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

To evaluate possible differences in follicle and oocyte developmental competence after gonadotrophin treatment in sows of obese and lean genotypes.

Methods

Follicle dynamics, ovulation rate and oocyte developmental competence to embryo were compared between females, of obese (n = 7) and lean genotypes (n = 10), treated with 1,250 I.U. of eCG and 500 I.U. of hCG.

Results

The obese genotype showed lower numbers of follicles growing to preovulatory stages (12.4 ± 1.8 vs 18.6 ± 1.0, P < 0.05), of corpora lutea (16.0 ± 0.9 vs 23.5 ± 0.9, P < 0.05), and of recovered oocytes/embryos (8.0 ± 1.3 vs 12.9 ± 0.9, P < 0.05). Thereafter, embryo viability rates also decreased when compared to lean genotypes (62.5 vs 77.6%, P < 0.05).

Discussion

To our knowledge, this is the first study analyzing the effect of obese genotypes on the ovarian response to exogenous gonadotrophins in a non-rodent animal model, the pig. A lower efficiency of gonadotrophin treatments for stimulation of follicle development and induction of ovulation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nieto R, Miranda A, García MA, Aguilera JF. The effect of dietary protein content and feeding level on the rate of protein deposition and energy utilization in growing Iberian pigs from 15 to 50 kg body weight. Br J Nutr. 2002;88:39–49.

    Article  PubMed  CAS  Google Scholar 

  2. Fernandez-Figares I, Lachica M, Nieto R, Rivera-Ferre MG, Aguilera JF. Serum profile of metabolites and hormones in obese (Iberian) and lean (Landrace) growing gilts fed balanced or lysine deficient diets. Livestock Sci. 2007;110:73–81.

    Article  Google Scholar 

  3. Brüssow KP, Schneider F, Tuchscherer A, Egerszegi I, Rátky J. Comparison of luteinizing hormone, leptin and progesterone levels in the systemic circulation (Vena jugularis) and near the ovarian circulation (Vena cava caudalis) during the oestrous cycle in Mangalica and Landrace gilts. J Reprod Develop. 2008;54:431–8.

    Article  Google Scholar 

  4. Ovilo C, Fernandez A, Fernandez AI, Folch JM, Varona L, Benıtez R, Nunez Y, Rodrıguez C, Silio L. Hypothalamic expression of porcine leptin receptor (LEPR), neuropeptide Y (NPY), and cocaine- and amphetamine-regulated transcript (CART) genes is influenced by LEPR genotype. Mamm Genome. 2010 (in press, doi: 10.1007/s00335-010-9307-1).

  5. Ovilo C, Fernández A, Noguera JL, Barragán C, Letón R, Rodríguez C, et al. Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genet Res. 2005;85:57–67.

    Article  PubMed  CAS  Google Scholar 

  6. Muñoz G, Ovilo C, Silió L, Tomás A, Noguera JL, Rodríguez MC. Single- and joint-population analyses of two experimental pig crosses to confirm quantitative trait loci on Sus scrofa chromosome 6 and leptin receptor effects on fatness and growth traits. J Anim Sci. 2009;87:459–68.

    Article  PubMed  Google Scholar 

  7. Morales J, Pérez JF, Baucells MD, Mourot J, Gasa J. Comparative digestibility and lipogenic activity in Landrace and Iberian finishing pigs fed ad libitum corn- and corn–sorghum–acorn-based diets. Livest Prod Sci. 2002;77:195–205.

    Article  Google Scholar 

  8. Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Ann Rev Physiol. 2008;70:537–56.

    Article  CAS  Google Scholar 

  9. Hoch M, Eberle AN, Wagner U, Bussmann C, Peters T, Peterli R. Expression and localization of melanocortin-1 receptor in human adipose tissues of severely obese patients. Obesity. 2007;15:40–9.

    Article  PubMed  CAS  Google Scholar 

  10. Farooqi IS, O’Rahilly S. Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat Clin Pract Endocrinol Metab. 2008;4:569–77.

    Article  PubMed  CAS  Google Scholar 

  11. Burgos C, Carrodeguas JA, Moreno C, Altarriba J, Tarrafeta L, Barcelona JA, et al. Allelic incidente in several pig breeds of a missense variant of pig melanocortin-4 receptor (MC4R) gene associated with carcass and productive traits; its relation to IGF2 genotype. Meat Sci. 2006;73:144–50.

    Article  CAS  Google Scholar 

  12. Lampert KP, Schmidt C, Fischer P, Volff JN, Hoffmann C, Muck J, et al. Determination of onset of sexual maturation and mating behavior by melanocortin receptor 4 polymorphisms. Curr Biol. 2010;20:1729–34.

    Article  PubMed  CAS  Google Scholar 

  13. Tao YX. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev. 2010;31:506–43.

    Article  PubMed  CAS  Google Scholar 

  14. Pasquali R, Gambineri A. Metabolic effects of obesity on reproduction. Reprod Biomed Online. 2006;12:542–51.

    Article  PubMed  CAS  Google Scholar 

  15. Bellver J, Busso C, Pellicer A, Remohí J, Simón C. Obesity and assisted reproductive technology outcomes. Reprod Biomed Online. 2006;12:562–8.

    Article  PubMed  Google Scholar 

  16. Fedorcsák P, Dale PO, Storeng R, Ertzeid G, Bjercke S, Oldereid N, et al. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod. 2004;19:2523–8.

    Article  PubMed  Google Scholar 

  17. Metwally M, Ledger WL, Li TC. Reproductive endocrinology and clinical aspects of obesity in women. Ann NY Acad Sci. 2008;1127:140–6.

    Article  PubMed  Google Scholar 

  18. Rátky J, Brüssow KP, Egerszegi I, Torner H, Schneider F, Solti L, et al. Comparison of follicular and oocyte development and reproductive hormone secretion during the ovulatory period in Hungarian native breed, Mangalica, and Landrace gilts. J Reprod Develop. 2005;51:427–32.

    Article  Google Scholar 

  19. Ovilo C, Fernandez A, Rodriguez MC, Nieto M, Silio L. Association of MC4R gene variants with growth, fatness, carcass composition and meat and fat quality traits in heavy pigs. Meat Sci. 2006;73:42–7.

    Article  CAS  Google Scholar 

  20. Rátky J, Torner H, Egerszegi I, Schneider F, Sarlos P, Manabe N, et al. Ovarian activity and oocyte development during follicular development in pigs at different reproductive phases estimated by the repeated endoscopic method. J Reprod Dev. 2005;51:109–15.

    Article  PubMed  Google Scholar 

  21. Hazeleger W, Bouwman EG, Noordhuizen JP, Kemp B. Effect of superovulation induction on embryonic development on day 5 and subsequent development and survival after nonsurgical embryo transfer in pigs. Theriogenology. 2000;53:1063–70.

    Article  PubMed  CAS  Google Scholar 

  22. Gonzalez-Añover P, Encinas T, Gomez-Izquierdo E, Sanz E, Sanchez-Sanchez R, Gonzalez-Bulne A. Accuracy of in vivo and ex vivo ultrasonographic evaluation of ovarian follicles and corpora lutea in sows. Theriogenology. 2009;71:1433–9.

    Article  PubMed  Google Scholar 

  23. Hunter MG, Wiesak T. Evidence for and implications of follicular heterogeneity in pigs. J Reprod Fertil Suppl. 1990;40:163–77.

    PubMed  CAS  Google Scholar 

  24. Yen HW, Ford JJ, Zimmerman DR, Johnson RK. Follicular development and maturation in gilts selected for an index of high ovulation rate and high prenatal survival. J Anim Sci. 2005;83:130–5.

    PubMed  CAS  Google Scholar 

  25. Petters RM, Wells KD. Culture of pig embryos. J Reprod Fertil. 1993;48(Suppl):61–73.

    CAS  Google Scholar 

  26. Langendijk P, Dieleman SJ, van Dooremalen C, Foxcroft GR, Gerritsen R, Hazeleger W. LH and FSH secretion, follicle development and oestradiol in sows ovulating or failing to ovulate in an intermittent suckling regimen. Reprod Fert Develop. 2009;21:313–22.

    Article  CAS  Google Scholar 

  27. Lopez-Bote C. Sustained utilization of the Iberian pig breed. Meat Sci. 1998;49:S17–27.

    Article  Google Scholar 

  28. Gonzalez-Añover P, Encinas T, Torres-Rovira L, Pallares P, Muñoz-Frutos J, Gomez-Izquierdo E, Sanchez-Sanchez R, Gonzalez-Bulnes A. Ovulation rate, embryo mortality and intrauterine growth retardation in obese swine with gene polymorphisms for leptin and melanocortin receptors. Theriogenology (in press).

  29. Gonzalez-Añover P, Encinas T, Sanz E, Letelier CA, Torres-Rovira L, de Mercado E, Pallares P, Sanchez-Sanchez R, Gonzalez-Bulnes A. Preovulatory follicle dynamics and ovulatory efficiency in sows with thrifty genotype and leptin resistance due to leptin receptor gene polymorphisms (Iberian pig). Gen Comp Endocrinol. 2010 (in press).

  30. Fedorcsák P, Storeng R, Dale PO, Tanbo T, Torjesen P, Urbancsek J. Leptin and leptin binding activity in the preovulatory follicle of polycystic ovary syndrome patients. Scand J Clin Lab Invest. 2000;60:649–55.

    Article  PubMed  Google Scholar 

  31. Jungheim ES, Schoeller EL, Marquard KL, Louden ED, Schaffer JE, Moley KH. Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology. 2010;151:4039–46.

    Article  PubMed  CAS  Google Scholar 

  32. Mermillod P, Oussaid B, Cognie Y. Aspects of follicular and oocyte maturation that affect the developmental potential of embryos. J Reprod Fertil Suppl. 1999;54:449–60.

    PubMed  CAS  Google Scholar 

  33. Baird DT, McNeilly AS. Onadotrophic control of follicular development and function during the oestrous cycle in the ewe. J Reprod Fertil Suppl. 1981;30:129–33.

    Google Scholar 

  34. Baird DT. Factors regulating the growth of the preovulatory follicle in sheep and human. J Reprod Fertil. 1983;69:343–52.

    Article  PubMed  CAS  Google Scholar 

  35. Kelly CR, Kopf JD, Zimmerman DR. Characterization of antral follicle populations during the estrous cycle in pigs selected for ovulation rate. J Anim Sci. 1988;66:1230–5.

    PubMed  CAS  Google Scholar 

  36. Foxcroft GR, Hunter MG. Basic physiology of follicular maturation in the pig. J Reprod Fertil Suppl. 1985;33:1–19.

    PubMed  CAS  Google Scholar 

  37. Pallares P, Garcia-Fernandez RA, Criado LM, Letelier CA, Fernandez-Toro JM, Esteban D, et al. Substantiation of ovarian effects of leptin by challenging a mouse model of obesity/type 2 diabetes. Theriogenology. 2010;73:1088–95.

    Article  PubMed  CAS  Google Scholar 

  38. Gonzalez RR, Simon C, Caballero-Campo P, Norman R, Chardonnens D, Devoto L, et al. Leptin and reproduction. Hum Reprod Update. 2000;6:290–300.

    Article  PubMed  CAS  Google Scholar 

  39. Rosenbaum M, Nicolson M, Hirsch J, Heymsfield SB, Gallagher D, Chu F, et al. Effects of gender, body composition, andmenopause on plasma concentrations of leptin. J Clin Endocrinol Metab. 1996;81:3424–7.

    Article  PubMed  CAS  Google Scholar 

  40. Shimizu H, Shimomura Y, Nakanishi Y, Futawatari T, Ohtani K, Sato N, et al. Estrogen increases in vivo leptin production in rats and human subjects. J Endocrinol. 1997;154:285–92.

    Article  PubMed  CAS  Google Scholar 

  41. Hong SC, Yoo SW, Cho GJ, Kim T, Hur JY, Park YK, et al. Correlation between estrogens and serum adipocytokines in premenopausal and postmenopausal women. Menopause. 2007;14:835–40.

    Article  PubMed  Google Scholar 

  42. Joo JK, Joo BS, Kim SC, Choi JR, Park SH, Lee KS. Role of leptin in improvement of oocyte quality by regulation of ovarian angiogenesis. Anim Reprod Sci. 2010;119:329–34.

    Article  PubMed  CAS  Google Scholar 

  43. Gregoraszczuk EL, Wojtowicz AK, Ptak A, Nowak K. In vitro effect of leptin on steroids’ secretion by FSH- and LH-treated porcine small, medium and large preovulatory follicles. Biol Reprod. 2003;3:227–39.

    Google Scholar 

  44. Ruiz-Cortes ZT, Martel-Kennes Y, Gevry NY, Downey BR, Palin MF, Murphy BD. Biphasic effects of leptin in porcine granulosa cells. Biol Reprod. 2003;68:789–96.

    Article  PubMed  CAS  Google Scholar 

  45. Przała J, Gregoraszczuk EL, Kotwica G, Stefańczyk-Krzymowska S, Ziecik AJ, Blitek A, et al. Mechanisms ensuring optimal conditions of implantation and embryo development in the pig. Reprod Biol. 2006;6:59–87.

    PubMed  Google Scholar 

  46. Sandrock M, Schulz A, Merkwitz C, Schöneberg T, Spanel-Borowski K, Ricken A. Reduction in corpora lutea number in obese melanocortin-4-receptor-deficient mice. Reprod Biol Endocrinol. 2009;24(7):24.

    Article  Google Scholar 

  47. Yu WH, Walczewska A, Karanth S, McCann SM. Nitric oxide mediates leptin-induced luteinizing hormone-releasing hormone (LHRH) and LHRH and leptin-induced LH release from the pituitary gland. Endocrinology. 1997;138:5055–8.

    Article  PubMed  CAS  Google Scholar 

  48. Bellver J, Melo MA, Bosch E, Serra V, Remohí J, Pellicer A. Obesity and poor reproductive outcome: the potential role of the endometrium. Fertil Steril. 2007;88:446–51.

    Article  PubMed  Google Scholar 

  49. Bellver J, Ayllón Y, Ferrando M, Melo M, Goyri E, Pellicer A, et al. Female obesity impairs in vitro fertilization outcome without affecting embryo quality. Fertil Steril. 2010;93:447–54.

    Article  PubMed  Google Scholar 

  50. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature. 1996;379:632–5.

    Article  PubMed  CAS  Google Scholar 

  51. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.

    Article  PubMed  CAS  Google Scholar 

  52. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–5.

    Article  PubMed  CAS  Google Scholar 

  53. Chua Jr SC, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996;271:994–6.

    Article  PubMed  CAS  Google Scholar 

  54. Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401.

    Article  PubMed  Google Scholar 

  55. Quinton ND, Lee AJ, Ross RJ, Eastell R, Blakemore AI. single nucleotide polymorphism (SNP) in the leptin receptor is associated with BMI, fat mass and leptin levels in postmenopausal Caucasian women. Hum Genet. 2001;108:233–6.

    Article  CAS  Google Scholar 

  56. Yiannakouris N, Yannakoulia M, Melistas L, Chan JL, Klimis-Zacas D, Mantzoros CS. The Q223R polymorphism of the leptin receptor gene is significantly associated with obesity and predicts a small percentage of body weight and body composition variability. J Clin Endocrinol Metab. 2001;86:4434–9.

    Article  PubMed  CAS  Google Scholar 

  57. Paracchini V, Pedotti P, Taioli E. Genetics of leptin and obesity: a HuGE review. Am J Epidemiol. 2005;162:101–14.

    Article  PubMed  Google Scholar 

  58. Ranadive SA, Vaisse C. Lessons from extreme human obesity: monogenic disorders. Endocrinol Metab Clin North Am. 2008;37:733–51.

    Article  PubMed  CAS  Google Scholar 

  59. Ukkola O, Bouchard C. Role of candidate genes in the responses to long-term overfeeding: review of findings. Obes Rev. 2004;5:3–12.

    Article  PubMed  CAS  Google Scholar 

  60. Zabeau L, Defeau D, Van der Heyden J, Iserentant H, Vandekerckhove J, Tavernier J. Functional analysis of leptin receptor activation using a Janus kinase/signal transducer and activator of transcription complementation assay. Mol Endocrinol. 2004;18:150–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank ACOMPOR and CPP staff for skilled technical assistance. This work was supported by funds from INIA (project RZ07-010) and ITACyL (project PEP 2008/01043) under the collaborative project CC07-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gonzalez-Bulnes.

Additional information

Capsule

Differences in follicle dynamics and oocyte developmental competence between obese and lean genotypes sows, submitted to exogenous gonadotrophin stimulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Frutos, J., Encinas, T., Pallares, P. et al. Developmental competence of antral follicles and their oocytes after gonadotrophin treatment of sows with gene polymorphisms for leptin and melanocortin receptors (Iberian pig). J Assist Reprod Genet 28, 437–443 (2011). https://doi.org/10.1007/s10815-011-9535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9535-7

Keywords

Navigation