Skip to main content

Advertisement

Log in

Dynamic expression patterns of imprinted genes in human embryonic stem cells following prolonged passaging and differentiation

  • Stem Cell Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the overall expression patterns of imprinted genes in human embryonic stem cells following long term culture and differentiation.

Materials and methods

Expression levels of 65 imprinted genes determined by PCR array were analyzed in one human embryonic stem cell line (cHES1) following prolonged passaging and differentiation.

Results

Transcripts of 63 imprinted genes were detected in cHES1 cells. Expression levels of all but 5 imprinted genes did not correlate with passage numbers or differ in cells after passage 50 compared with those before passage 50. SLC22A2, SLC22A3, CPA, H19, COPG2IT1 and IGF2 expression were significantly increased in embryoid bodies compared with undifferentiated cells.

Conclusions

The global expression profiles of imprinted genes are generally stable in human embryonic stem cells after prolonged passaging and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  2. Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol. 2005;23:699–708.

    Article  PubMed  CAS  Google Scholar 

  3. Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 1992;6:705–14.

    Article  PubMed  CAS  Google Scholar 

  4. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  PubMed  CAS  Google Scholar 

  5. Wu J, Qin Y, Li B, He WZ, Sun ZL. Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics. 2008;91:443–50.

    Article  PubMed  CAS  Google Scholar 

  6. Wang CC, Xiao Y, Hu ZH, Chen YB, Liu N, Hu GX. PEG10 directly regulated by E2Fs might have a role in the development of hepatocellular carcinoma. FEBS Lett. 2008;582:2793–8.

    Article  PubMed  CAS  Google Scholar 

  7. Yu WQ, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008;451:202–10.

    Article  PubMed  CAS  Google Scholar 

  8. Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod. 2007;22:26–35.

    Article  PubMed  CAS  Google Scholar 

  9. Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–4.

    Article  PubMed  CAS  Google Scholar 

  10. Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64:918–26.

    Article  PubMed  CAS  Google Scholar 

  11. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout 3rd WM, Biniszkiewicz D, et al. Epigenetic instability in ES cells and cloned mice. Science. 2001;293:95–7.

    Article  PubMed  CAS  Google Scholar 

  12. Fujimoto A, Mitalipov SM, Kuo HC, Wolf DP. Aberrant genomic imprinting in rhesus monkey embryonic stem cells. Stem Cells. 2006;24:595–603.

    Article  PubMed  CAS  Google Scholar 

  13. Rugg-Gunn PJ, Ferguson-Smith AC, Pedersen RA. Epigenetic status of human embryonic stem cells. Nat Genet. 2005;37:585–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kim KP, Thurston A, Mummery C, Oostwaard DWV, Priddle H, Allegrucci C, et al. Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines. Genome Res. 2007;17:1731–42.

    Article  PubMed  CAS  Google Scholar 

  15. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005;19:1129–55.

    Article  PubMed  CAS  Google Scholar 

  16. Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development. 1991;113:1105–14.

    PubMed  CAS  Google Scholar 

  17. Sun BW, Yang AC, Feng Y, Sun YJ, Zhu YF, Zhang Y, et al. Temporal and parental-specific expression of imprinted genes in a newly derived Chinese human embryonic stem cell line and embryoid bodies. Hum Mol Genet. 2006;15:65–75.

    Article  PubMed  Google Scholar 

  18. Li T, Zhou CQ, Mai QY, Zhuang GL. Establishment of human embryonic stem cell line from gamete donors. Chin Med J (Engl). 2005;118:116–22.

    Google Scholar 

  19. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  20. Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Pera RA, Firpo MT. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet. 2004;13:601–8.

    Article  PubMed  CAS  Google Scholar 

  21. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006;38:101–6.

    Article  PubMed  CAS  Google Scholar 

  22. Kanber D, Buiting K, Zeschnigk M, Ludwig M, Horsthemke B. Low frequency of imprinting defects in ICSI children born small for gestational age. Eur J Hum Genet. 2009;17:22–9.

    Article  PubMed  CAS  Google Scholar 

  23. Schulz R, McCole RB, Woodfine K, Wood AJ, Chahal M, Monk D, et al. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet. 2009;18:118–27.

    Article  PubMed  CAS  Google Scholar 

  24. Siu IM, Bai R, Gallia GL, Edwards JB, Tyler BM, Eberhart CG, et al. Coexpression of neuronatin splice forms promotes medulloblastoma growth. Neuro Oncol. 2008;10:716–24.

    Article  PubMed  CAS  Google Scholar 

  25. Uchihara T, Okubo C, Tanaka R, Minami Y, Inadome Y, Iijima T, et al. Neuronatin expression and its clinicopathological significance in pulmonary non-small cell carcinoma. J Thorac Oncol. 2007;2:796–801.

    Article  PubMed  Google Scholar 

  26. Morison IM, Becroft DM, Taniguchi T, Woods CG, Reeve AE. Somatic overgrowth associated with overexpression of insulin-like growth factor II. Nat Med. 1996;2:311–6.

    Article  PubMed  CAS  Google Scholar 

  27. Lee WK, Wolff NA, Thevenod F. Organic cation transporters: physiology, toxicology and special focus on ethidium as a novel substrate. Curr Drug Metab. 2009;10:617–31.

    PubMed  CAS  Google Scholar 

  28. Bourdet DL, Pritchard JB, Thakker DR. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J Pharmacol Exp Ther. 2005;315:1288–97.

    Article  PubMed  CAS  Google Scholar 

  29. Dao D, Frank D, Qian N, O’Keefe D, Vosatka RJ, Walsh CP, et al. IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum Mol Genet. 1998;7:597–608.

    Article  PubMed  CAS  Google Scholar 

  30. Bentley L, Nakabayashi K, Monk D, Beechey C, Peters J, Birjandi Z, et al. The imprinted region on human chromosome 7q32 extends to the carboxypeptidase A gene cluster: an imprinted candidate for Silver-Russell syndrome. J Med Genet. 2003;40:249–56.

    Article  PubMed  CAS  Google Scholar 

  31. Verhaagh S, Schweifer N, Barlow DP, Zwart R. Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26-q27. Genomics. 1999;55:209–18.

    Article  PubMed  CAS  Google Scholar 

  32. Yamada T, Mitsuya K, Kayashima T, Yamasaki K, Ohta T, Yoshiura K, et al. Imprinting analysis of 10 genes and/or transcripts in a 1.5-Mb MEST-flanking region at human chromosome 7q32. Genomics. 2004;83:402–12.

    Article  PubMed  CAS  Google Scholar 

  33. Fowden AL, Sibley C, Reik W, Constancia M. Imprinted genes, placental development and fetal growth. Horm Res. 2006;65 Suppl 3:50–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gabory A, Ripoche MA, Yoshimizu T, Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006;113:188–93.

    Article  PubMed  CAS  Google Scholar 

  35. Viville S, Surani MA. Towards unravelling the Igf2/H19 imprinted domain. Bioessays. 1995;17:835–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Doctoral Station Foundation, Ministry of Education (20050558097); National 863 program (20060102A1022, 2006AA02A102, 2006AA02A101); Guangdong provincial science and technology foundation (2008A030201028); National 973 program (2007CB948100); Chinese National Nature Foundation (30801239); The PhD programs foundation of ministry of China (200805581164). 2009 Sun yat-sen university sponsored programs (09YKP436).

Disclosure of Potential Conflicts of Interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canquan Zhou.

Additional information

Xiuyun Mai and Qingyun Mai contributed equally to this work.

Capsule

Transcriptional levels of imprinted genes are generally stable in human embryonic stem cells following extended culture and upon differentiation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Comparison of housekeeping genes (HKG) expression among 3 groups (undifferentiated hES cells before passage 50, after passage 50 and differentiated hES cells). No change of expression level in 4 HKG (B2M, HPRT1, RPL13A and GAPDH) was observed. Y-value is expressed as relative fold change in mRNA levels when compared with those in cells before passage 50 defined as 1. Bars indicate mean ± SEM (n = 3). The P value were determined by ANOVA, P > 0.05 (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, X., Mai, Q., Li, T. et al. Dynamic expression patterns of imprinted genes in human embryonic stem cells following prolonged passaging and differentiation. J Assist Reprod Genet 28, 315–323 (2011). https://doi.org/10.1007/s10815-010-9524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9524-2

Keywords

Navigation