Skip to main content

Advertisement

Log in

Genetic and epigenetic X-chromosome variations in a parthenogenetic human embryonic stem cell line

  • Stem Cell Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess the genetic and epigenetic status of parthenogenetic human embryonic stem cells (phESCs).

Methods

Cytogenetics, X chromosome inactivation (XCI) and gene expression patterns were analyzed in one phESC line (FY-phES-018) that was derived from our laboratory.

Results

FY-phES-018 cells displayed the classical characteristics of normal hESCs. These cells had a 46, XX karyotype, and no inactive X chromosomes were observed before passage 20. After being cultured long term in vitro, some cells lost one X, and the proportion of cells with only one X gradually increased. At passage 35, almost all the cells displayed a 45, XO karyotype. Interestingly, at passage 45, the recovery of the X-chromosome was observed, and XCI became detectable; the mosaic ratio of 46, XX to 45, XO was 67:33. After passage 60, most cells displayed the 46, XX karyotype again with a mosaic ratio of 97:3. Some aberrant genomic imprinting was also observed in these cells.

Conclusions

The phESCs line FY-phES-018 is both genetically and epigenetically unstable; therefore, further research is needed before using these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oh SK, Kim HS, Ahn HJ, Seol HW, Kim YY, Park YB, et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells. 2005;23:211–9.

    Article  PubMed  Google Scholar 

  2. Peura TT, Bosman A, Stojanov T. Derivation of human embryonic stem cell lines. Theriogenology. 2007;67:32–42.

    Article  PubMed  Google Scholar 

  3. Cibelli JB, Cunniff K, Vrana KE. Embryonic stem cells from parthenotes. Methods Enzymol. 2006;418:117–35.

    Article  PubMed  CAS  Google Scholar 

  4. Lin G, OuYang Q, Zhou X, Gu Y, Yuan D, Li W, et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res. 2007;17:999–1007.

    Article  PubMed  CAS  Google Scholar 

  5. Revazova ES, Turovets NA, Kochetkova OD, Kindarova LB, Kuzmichev LN, Janus JD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9:432–49.

    Article  PubMed  CAS  Google Scholar 

  6. Mai Q, Yu Y, Li T, Wang L, Chen MJ, Huang SZ, et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 2007;17:1008–19.

    Article  PubMed  CAS  Google Scholar 

  7. Revazova ES, Turovets NA, Kochetkova OD, Agapova LS, Sebastian JL, Pryzhkova MV, et al. HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2008;10:11–24.

    Article  PubMed  CAS  Google Scholar 

  8. Lu Z, Zhu W, Yu Y, Jin D, Guan Y, Yao R, et al. Derivation and long-term culture of human parthenogenetic embryonic stem cells using human foreskin feeders. J Assist Reprod Genet. 2010;27:285–91.

    Article  PubMed  Google Scholar 

  9. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet. 2005;37:1099–103.

    Article  PubMed  CAS  Google Scholar 

  10. Silva SS, Rowntree RK, Mekhoubad S, Lee JT. X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci USA. 2008;105:4820–5.

    Article  PubMed  CAS  Google Scholar 

  11. Allegrucci C, Thurston A, Lucas E, Young L. Epigenetics and the germline. Reproduction. 2005;129:137–49.

    Article  PubMed  CAS  Google Scholar 

  12. Allegrucci C, Denning C, Priddle H, Young L. Stem-cell consequences of embryo epigenetic defects. Lancet. 2004;364:206–8.

    Article  PubMed  Google Scholar 

  13. Allegrucci C, Young LE. Differences between human embryonic stem cell lines. Hum Reprod Update. 2007;13:103–20.

    Article  PubMed  CAS  Google Scholar 

  14. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. 2004;5:45–54.

    Article  PubMed  CAS  Google Scholar 

  15. Tomkins DJ, McDonald HL, Farrell SA, Brown CJ. Lack of expression of XIST from a small ring X chromosome containing the XIST locus in a girl with short stature, facial dysmorphism and developmental delay. Eur J Hum Genet. 2002;10:44–51.

    Article  PubMed  CAS  Google Scholar 

  16. Kantor B, Kaufman Y, Makedonski K, Razin A, Shemer R. Establishing the epigenetic status of the Prader-Willi/Angelman imprinting center in the gametes and embryo. Hum Mol Genet. 2004;13:2767–79.

    Article  PubMed  CAS  Google Scholar 

  17. Gong SP, Kim H, Lee EJ, Lee ST, Moon S, Lee HJ, et al. Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation. Hum Reprod. 2009;24:805–14.

    Article  PubMed  CAS  Google Scholar 

  18. Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, et al. Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet. 2009;18:2177–87.

    Article  PubMed  CAS  Google Scholar 

  19. Sun X, Long X, Yin Y, Jiang Y, Chen X, Liu W, et al. Similar biological characteristics of human embryonic stem cell lines with normal and abnormal karyotypes. Hum Reprod. 2008;23:2185–93.

    Article  PubMed  CAS  Google Scholar 

  20. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells. Setting standards for human embryonic stem cells. Science. 2003;300:913–6.

    Article  PubMed  CAS  Google Scholar 

  21. Kubota T, Nonoyama S, Tonoki H, Masuno M, Imaizumi K, Kojima M, et al. A new assay for the analysis of X-chromosome inactivation based on methylation-specific PCR. Hum Genet. 1999;104:49–55.

    Article  PubMed  CAS  Google Scholar 

  22. Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH. Methylation-specific PCR simplifies imprinting analysis. Nat Genet. 1997;16:16–7.

    PubMed  CAS  Google Scholar 

  23. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002;30:e15.

    Article  PubMed  Google Scholar 

  24. Kim K, Lerou P, Yabuuchi A, Lengerke C, Ng K, West J, et al. Histocompatible embryonic stem cells by parthenogenesis. Science. 2007;315:482–6.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.

    Article  PubMed  Google Scholar 

  26. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25:207–15.

    Article  PubMed  CAS  Google Scholar 

  27. Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, et al. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell. 2007;1:346–52.

    Article  PubMed  CAS  Google Scholar 

  28. Robertson EJ, Evans MJ, Kaufman MH. X-chromosome instability in pluripotential stem cell lines derived from parthenogenetic embryos. J Embryol Exp Morphol. 1983;74:297–309.

    PubMed  CAS  Google Scholar 

  29. Zvetkova I, Apedaile A, Ramsahoye B, Mermoud JE, Crompton LA, John R, et al. Global hypomethylation of the genome in XX embryonic stem cells. Nat Genet. 2005;37:1274–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hall LL, Byron M, Butler J, Becker KA, Nelson A, Amit M, et al. X-inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol. 2008;216:445–52.

    Article  PubMed  CAS  Google Scholar 

  31. Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, et al. X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci USA. 2008;105:4709–14.

    Article  PubMed  CAS  Google Scholar 

  32. Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod. 2002;17:413–9.

    Article  PubMed  Google Scholar 

  33. Allegrucci C, Young LE. Differences between human embryonic stem cell lines. Hum Reprod Update. 2007;13:103–20.

    Article  PubMed  CAS  Google Scholar 

  34. Donahue SL, Lin Q, Cao S, Ruley HE. Carcinogens induce genome-wide loss of heterozygosity in normal stem cells without persistent chromosomal instability. Proc Natl Acad Sci USA. 2006;103:11642–6.

    Article  PubMed  CAS  Google Scholar 

  35. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell. 2010;141:872–83.

    Article  PubMed  CAS  Google Scholar 

  36. Liu W, Sun X. Skewed X chromosome inactivation in diploid and triploid female human embryonic stem cells. Hum Reprod. 2009;24:1834–43.

    Article  PubMed  CAS  Google Scholar 

  37. da Rocha ST, Ferguson-Smith AC. Genomic imprinting. Curr Biol. 2004;14:R646–9.

    Article  PubMed  Google Scholar 

  38. Lopes S, Lewis A, Hajkova P, Dean W, Oswald J, Forne T, et al. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet. 2003;12:295–305.

    Article  PubMed  CAS  Google Scholar 

  39. Jiang H, Sun B, Wang W, Zhang Z, Gao F, Shi G, et al. Activation of paternally expressed imprinted genes in newly derived germline-competent mouse parthenogenetic embryonic stem cell lines. Cell Res. 2007;17:792–803.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30871378).

Author Disclosure Statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaorong Gao or Xiaofang Sun.

Additional information

Capsule

X chromosome loss and recovery accompanied by variations in X chromosome inactivation were found in one parthenogenetic human embryonic stem cell line.

Weiqiang Liu, Yifei Yin, and Yonghua Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Yin, Y., Jiang, Y. et al. Genetic and epigenetic X-chromosome variations in a parthenogenetic human embryonic stem cell line. J Assist Reprod Genet 28, 303–313 (2011). https://doi.org/10.1007/s10815-010-9517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9517-1

Keywords

Navigation