Skip to main content

Advertisement

Log in

The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted on the effects of vitrification cryotop method on gene expression of mature oocytes in Mus musculus.

Methods

Transcript analyses of three mouse genes, namely Mater, Hook1 and Sod1, were performed upon non-vitrified and vitrified oocytes with different concentrations of dimethyl sulfoxide (DMSO) and ethylene glycol (EG),15%: 7.5% DMSO + 7.5% EG, and 30%: 15% DMSO + 15% EG, using cryotop following normalization of transcripts with Hprt1 by nested quantitative PCR.

Results

Vitrification caused down-regulation of Mater and Hook1 and up-regulation of Sod1 when lower concentrations of cryoprotectants were used as opposed to the control group. The relative expression of Sod1 in vit2 (30% v/v) was significantly higher than vit1 (15% v/v). Quantitative transcript analysis of Mater and Hook1 for the vit2 condition failed to produce any data. Survival rates were the same for both vitrification treatments and significantly lower than control group.

Conclusions

Although vit1 treatment had lower survival rate compared to control group, it demonstrated better stability comparing to vit2 based on the transcript analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fahy GM, MacFarlane DR, Angell DA, Meryman HT. Vitrification as an approach to cryopreservation. Cryobiology. 1984;21:407–26.

    Article  CAS  PubMed  Google Scholar 

  2. Mukaida T, Wada S, Takahashi K, Pedro PB, An TZ, Kasai M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod. 1998;13(10):2874–9.

    CAS  PubMed  Google Scholar 

  3. Cai XY, Chen GA, Lian Y, Zheng XY, Peng HM. Cryoloop vitrification of rabbit oocytes. Hum Reprod. 2005;20(7):1969–74.

    Article  CAS  PubMed  Google Scholar 

  4. Mamo S, Bodo S, Kobolak J, Polgar Z, Tolgyesi G, Dinnyes A. Gene expression profiles of vitrified in vivo derived 8-cell stage mouse embryos detected by high density oligonucleotide microarrays. Mol Reprod Dev. 2006;73(11):1380–92.

    Article  CAS  PubMed  Google Scholar 

  5. Mamo S, Gal AB, Bodo S, Dinnyes A. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev Biol. 2007;7:14.

    Article  PubMed  CAS  Google Scholar 

  6. Mamo S, Gal AB, Polgar Z, Dinnyes A. Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and preimplantation stage embryos. BMC Mol Biol. 2008;9:67.

    Article  PubMed  CAS  Google Scholar 

  7. Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet. 2000;26(3):267–8.

    Article  CAS  PubMed  Google Scholar 

  8. Tong ZB, Gold L, De Pol A, Vanevski K, Dorward H, Sena P, et al. Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology. 2004;145(3):1427–34.

    Article  CAS  PubMed  Google Scholar 

  9. Blomberg LA, Long EL, Sonstegard TS, VanTassell CP, Dobrinsky JR, Zuelke KA. Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus). Physiol Genomics. 2005;20:188–94.

    Article  CAS  PubMed  Google Scholar 

  10. El Mouatassim S, Guérin P, Ménézo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999;5(8):720–5.

    Article  CAS  PubMed  Google Scholar 

  11. Simpson F, Martin S, Evans TM, Kerr M, James DE, Parton RG, et al. A novel hook-related protein family and the characterization of hook-related protein 1. Traffic. 2005;6(6):442–58.

    Article  CAS  PubMed  Google Scholar 

  12. Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, et al. Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet. 2004;13(19):2263–78.

    Article  CAS  PubMed  Google Scholar 

  13. Chen SU, Lien YR, Cheng YY, Chen HF, Ho HN, Yang YS. Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Reprod. 2001;16(11):2350–6.

    CAS  PubMed  Google Scholar 

  14. Li XH, Chen SU, Zhang X, Tang M, Kui YR, Wu X, et al. Cryopreserved oocytes of infertile couples undergoing assisted reproductive technology could be an important source of oocyte donation: a clinical report of successful pregnancies. Hum Reprod. 2005;20(12):3390–4.

    Article  PubMed  Google Scholar 

  15. Munoz-Fernandez MA, Gomez-Chacon GF, inventors; Genomadrid S.A. assignee. Method of in-vitro detection and quantification of HIV DNA by quantitative PCR. USA. 2008.

  16. Forsman A, Uzameckis D, Ronnblom L, Baecklund E, Aleskog A, Bindra A, et al. Single-tube nested quantitative PCR: a rational and sensitive technique for detection of retroviral DNA. Application to RERV-H/HRV-5 and confirmation of its rabbit origin. J Virol Methods. 2003;111(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Avci ME, Konu O, Yagci T. Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression. BMC Cancer. 2008;8:392–402.

    Article  PubMed  CAS  Google Scholar 

  18. Luciano P, Bertea CM, Temporale G, Maffei ME. DNA internal standard for the quantitative determination of hallucinogenic plants in plant mixtures. Genetics. 2007;1:262–6.

    Google Scholar 

  19. Pfaffl MW. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res. 2001;29(9):2002–7.

    Article  Google Scholar 

  20. Boonkusol D, Gal AB, Bodo S, Gorhony B, Kitiyanant Y, Dinnyes A. Gene expression profiles and in vitro development following vitrification of pronuclear and 8-cell stage mouse embryos. Mol Reprod Dev. 2006;73(6):700–8.

    Article  CAS  PubMed  Google Scholar 

  21. Mazoochi T, Salehnia M, Pourbeiranvand S, Forouzandeh M, Mowla SJ, Hajizadeh E. Analysis of apoptosis and expression of genes related to apoptosis in cultures of follicles derived from vitrified and non-vitrified ovaries. Mol Hum Reprod. 2009;15(3):155–64.

    Article  CAS  PubMed  Google Scholar 

  22. Tong ZB, Bondy CA, Zhou J, Nelson LM. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum Reprod. 2002;17(4):903–11.

    Article  CAS  PubMed  Google Scholar 

  23. Gomes CM, Silva CA, Acevedo N, Baracat E, Serafini P, Smith GD. Influence of vitrification on mouse metaphase II oocyte spindle dynamics and chromatin alignment. Fertil Steril. 2008;90(4):1396–404.

    Article  PubMed  Google Scholar 

  24. Orief Y, Dafopoulos K, Schultze-Mosgau A, Al-Hasani S. Vitrification: will it replace the conventional gamete cryopreservation techniques? Middle East Fertil Soc J. 2005;10(3):171–84.

    Google Scholar 

  25. Picton HM, Gosden RG, Leibo SP. Cryopreservation of oocytes and ovarian tissue. Medical, Ethical and Social Aspects of Assisted Reproduction. Geneva: World Health Organization; 2001. p. 142–51.

    Google Scholar 

  26. Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, Hutz RJ. Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem. 1998;273(13):7765–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Raquel Fialho in Portugal for her advice in the Lab. This work was supported by CITA-A, University of the Azores, Angra do Hero´ısmo, Portugal and Cellular and Molecular Biology Researcher Center (CMBRC), Medical School of Shaheed Beheshti University of Medical Sciences and Health Services, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hosseini.

Additional information

Capsule

This research investigated the effects of vitrification cryotop method on gene expression (Mater, Sod1 and Hook1) in metaphase II mouse oocytes by nested quantitative PCR

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, A., Farrokhi, N., Moreira da Silva, F. et al. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR. J Assist Reprod Genet 27, 599–604 (2010). https://doi.org/10.1007/s10815-010-9453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9453-0

Keyword

Navigation