Journal of Assisted Reproduction and Genetics

, Volume 27, Issue 8, pp 483–490 | Cite as

Effect of α-tocopherol supplementation on in vitro maturation of sheep oocytes and in vitro development of preimplantation sheep embryos to the blastocyst stage

  • Rajesh NatarajanEmail author
  • Madhira Bhawani Shankar
  • Deecaraman Munuswamy
Gamete biology



To determine the effects of α-tocopherol supplementation to oocyte maturation media and embryo culture media on the yield of ovine embryos.


α-tocopherol, at concentrations of 0, 50, 100, 200, 400 and 500 µM was supplemented to ovine oocyte or embryo culture media and cultured at 5% or 20% O2 levels. Percentages of cleavage, morula and blastocyst, total cell count and comet assay were taken as indicators of developmental competence of embryos.


200 µM α-tocopherol in embryo culture medium at 20% O2 level significantly increased the rates of cleavage (P < 0.05), morulae (P < 0.05) and blastocyst (P < 0.01) formation and blastocyst total cell number (P < 0.01) when compared with control. The rates of blastocyst formation were also significantly higher in 100 µM (P < 0.01) and 400 µM (P < 0.05) supplemented groups than control.


α-tocopherol supplementation may enhance the in vitro developmental competence of ovine embryos by protecting them from oxidative damage.


Vitamin E Ovine In vitro fertilization Oxidative stress Embryo culture 



The technical expertise provided by Dr. Palanisamy and technical assistance provided by Mr. Kartheeswaran, Mr. Shankar and Ms. Nithya, Department of Animal Biotechnology, Tamilnadu Veterinary and Animal Sciences University, Chennai are gratefully acknowledged.


  1. 1.
    Camargo LSA, Viana JHM, Sa WF, Ferreira AM, Ramos AA, Filho VRV. Factors influencing in vitro embryo production. Anim Reprod. 2006;3(1):19–28.Google Scholar
  2. 2.
    Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–89.CrossRefPubMedGoogle Scholar
  3. 3.
    Lapointe S, Sullivan R, Sirard MA. Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol Reprod. 1998;58(3):747–53.CrossRefPubMedGoogle Scholar
  4. 4.
    Oyawoye O, Gadir AA, Garner A, Constantinovici N, Perrett C, Hardiman P. Antioxidants and reactive oxygen species in follicular fluid of women undergoing IVF: relationship to outcome. Hum Reprod. 2003;18(11):2270–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Nasr-Esfahani MM, Johnson MH. The origin of reactive oxygen species in mouse embryos cultured in vitro. Development. 1991;113(2):551–60.PubMedGoogle Scholar
  6. 6.
    Silva PFN, Gadella BM, Colenbrander B, Roelen BAJ. Exposure of bovine sperm to pro-oxidants impairs the developmental competence of the embryo after the first cleavage. Theriogenology. 2007;67(3):609–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62(7):1186–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Bedaiwy MA, Falcone T, Mohamed MS, Aleem AAN, Sharma RK, Worley SE, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 2004;82(3):593–600.CrossRefPubMedGoogle Scholar
  9. 9.
    Sies H, Stahl W. Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Am J Clin Nutr. 1995;62:1315S–21S.PubMedGoogle Scholar
  10. 10.
    Tappel AL. Vitamin E as the biological lipid antioxidant. Vitam Horm. 1962;20:493–510.CrossRefGoogle Scholar
  11. 11.
    Miller JK, Brzezinska-Slebodzinska E, Madsen FC. Oxidative stress, antioxidants and animal function. J Dairy Sci. 1993;76(9):2812–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Olson SE, Seidel Jr GE. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol Reprod. 2000;62(2):248–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Carlson JC, Wu XM, Sawada M. Oxygen radicals and the control of ovarian corpus luteum function. Free Radic Biol Med. 1993;14(1):79–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Jeong YW, Park SW, Hossein MS, Kim S, Kim JH, Lee SH, et al. Antiapoptotic and embryotrophic effects of alpha-tocopherol and L-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology. 2006;66(9):2104–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. The effects of antioxidant supplementation during percoll preparation on human sperm DNA integrity. Hum Reprod. 1998;13(5):1240–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Pawshe CH, Totey SM, Jain SK. A comparison of three methods of recovery of goat oocytes for in vitro maturation and fertilization. Theriogenology. 1994;42(1):117–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Wani NA, Wani GM, Khan MZ, Salahudin S. Effect of oocyte harvesting techniques on in vitro maturation and in vitro fertilization in sheep. Small Rumin Res. 2000;36(1):63–7.CrossRefGoogle Scholar
  18. 18.
    Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod. 1975;12(2):260–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30(3):493–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Mermillod P, Vansteenbrugge A, Wils C, Mourmeaux JL, Massip A, Dessy F. Characterization of the embryotrophic activity of exogenous protein-free oviduct-conditioned medium used in culture of cattle embryos. Biol Reprod. 1993;49(3):582–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi M, Keicho K, Takahashi H, Ogawa H, Schultz RM, Okano A. Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by comet assay. Theriogenology. 2000;54(1):137–45.CrossRefPubMedGoogle Scholar
  22. 22.
    Bernardi ML, Flechon JE, Delouis C. Influence of culture system and oxygen tension on the development of ovine zygotes matured and fertilized in vitro. J Reprod Fertil. 1996;106(2):161–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson JGE, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89:573–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Leoni GG, Rosati I, Succu S, Bogliolo L, Bebbere D, Berlinguer F, et al. A low oxygen atmosphere during IVF accelerates the kinetic of formation of in vitro produced ovine blastocysts. Reprod Domest Anim. 2007;42(3):299–304.CrossRefPubMedGoogle Scholar
  25. 25.
    Fujitani Y, Kasai K, Ohtani S, Nishimura K, Yamada M, Utsumi K. Effect of oxygen concentration and free radicals on in vitro development of in vitro-produced bovine embryos. J Anim Sci. 1997;75:483–9.PubMedGoogle Scholar
  26. 26.
    Dalvit G, Llanes SP, Descalzo A, Insani M, Beconi M, Cetica P. Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. Reprod Dom Anim. 2005;40(2):93–7.CrossRefGoogle Scholar
  27. 27.
    Tatemoto H, Sakurai N, Muto N. Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod. 2000;63:805–10.CrossRefPubMedGoogle Scholar
  28. 28.
    Dalvit GC, Cetica PD, Pintos LN, Beconi MT. Reactive oxygen species in bovine embryo in vitro production. Biocell. 2005;29:209–12.PubMedGoogle Scholar
  29. 29.
    Johnson MH, Nasr-Esfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays. 1994;16(1):31–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Schreck R, Baeuerle PA. A role for oxygen radicals as second messengers. Trends Cell Biol. 1991;1(2–3):39–42.CrossRefPubMedGoogle Scholar
  31. 31.
    Burdon RH. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans. 1996;24(4):1028–32.PubMedGoogle Scholar
  32. 32.
    Nose K. Role of reactive oxygen species in the regulation of physiological functions. Bio Pharm Bull. 2000;23(8):897–903.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rajesh Natarajan
    • 1
    Email author
  • Madhira Bhawani Shankar
    • 2
  • Deecaraman Munuswamy
    • 1
  1. 1.Department of Industrial BiotechnologyDr MGR Educational and Research Institute – Dr MGR UniversityChennaiIndia
  2. 2.Huclin Research Ltd.ChennaiIndia

Personalised recommendations