Skip to main content
Log in

Kinetics of human male pronuclear development in a heterologous ICSI model

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 06 April 2010

Abstract

Purpose

To evaluate human sperm nuclear chromatin decondensation in a heterologous ICSI system using hamster ova injected with human sperm.

Materials and methods

Frozen hamster oocytes were injected with Triton X-100 treated sperm and fixed at different time points post ICSI. Oocytes injected with non-treated sperm served as controls. Male pronuclear decondensation was evaluated after staining with DAPI.

Results

Sperm cells with partially destroyed membranes and depletion of the acrosome decondense more rapidly and to a greater extent than membrane/acrosome intact cells. Marked variability in pronuclear size was observed for any time point post ICSI, which most probably reflects the heterogeneity in the mature human sperm population.

Conclusion

Remodeling of male gamete nuclei in this heterologous ICSI mimics events that occur during natural fertilization in humans and therefore this approach may be used for studies of human sperm chromosomes transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collas P, Poccia D. Remodeling the sperm nucleus into a male pronucleus at fertilization. Theriogenology. 1998;49:67–81.

    Article  CAS  PubMed  Google Scholar 

  2. Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int Rev Cytol. 2000;195:1–65.

    Article  CAS  PubMed  Google Scholar 

  3. McLay DW, Clarke HJ. Remodeling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125:625–33.

    Article  CAS  PubMed  Google Scholar 

  4. Fulka H, Mrazek M, Tepla O, Fulka Jr J. DNA methylation pattern in human zygotes and developing embryos. Reproduction. 2004;128:703–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM. Well-defined genome architecture in the human sperm nucleus. Chromosoma. 1995;103:577–90.

    Article  CAS  PubMed  Google Scholar 

  6. Haaf T, Ward DC. Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res. 1995;219:604–11.

    Article  CAS  PubMed  Google Scholar 

  7. Mudrak O, Tomilin N, Zalensky A. Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci. 2005;118:4541–50.

    Article  CAS  PubMed  Google Scholar 

  8. Hazzouri M, Rousseaux S, Mongelard F, Usson Y, Pelletier R, Faure AK, et al. Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev. 2000;55:307–15.

    Article  CAS  PubMed  Google Scholar 

  9. Tilgen N, Guttenbach M, Schmid M. Heterochromatin is not an adequate explanation for close proximity of interphase chromosomes 1–Y, 9–Y, and 16–Y in human spermatozoa. Exp Cell Res. 2001;265:283–7.

    Article  CAS  PubMed  Google Scholar 

  10. Zalenskaya IA, Zalensky AO. Non-Random positioning of chromosomes in human sperm nuclei. Chromosome Res. 2004;12:1–11.

    Article  Google Scholar 

  11. Fulka H, Barnetova I, Mosko T, Fulka J. Epigenetic analysis of human spermatozoa after injection into ovulated mouse oocytes. Hum Reprod. 2008;23:627–34.

    Article  CAS  PubMed  Google Scholar 

  12. Yanagimachi R, Yanagimachi H, Rogers BJ. The use of zona free animal ova as a test system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod. 1976;15:471–6.

    Article  CAS  PubMed  Google Scholar 

  13. Rogers BJ, Perreault SD, Brentwood BJ, McCarville C, Hale R, Soderdahl DW. Variability in human-hamster in vitro assay for fertility evaluation. Fertil Steril. 1983;39:204–11.

    CAS  PubMed  Google Scholar 

  14. Aiken RJ. Diagnostic value of the hamster oocyte penetration assay. Int J Androl. 1984;7:273–5.

    Article  Google Scholar 

  15. Hewitson L, Haavisto L, Simerly C, Jones J, Schatten G. Microtubule organization and chromatin configurations in hamster oocytes during fertilization and parthenogenetic activation, and after insemination with human sperm. Biol Reprod. 1997;57:967–75.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenbusch BE. Cytogenetics of human spermatozoa: what about the reproductive relevance of structural chromosome aberrations? J Assist Reprod Genet. 1995;12:375–83.

    Article  CAS  PubMed  Google Scholar 

  17. Yanagida K, Yanagimachi R, Perreault SD, Kleinfeld RG. Thermostability of sperm nuclei assessed by microinjection into hamster oocytes. Biol Reprod. 1991;44:440–7.

    Article  CAS  PubMed  Google Scholar 

  18. Araki Y, Yoshizawa M, Araki Y. A novel method for chromosome analysis of human sperm using enucleated mouse oocytes. Hum Reprod. 2005;20:1244–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod. 2006;75:442–51.

    Article  CAS  PubMed  Google Scholar 

  20. Sutovsky P, Hewisotn L, Simerly CR, Tengowski MW, Navara CS, Hasvisto A, et al. Intracytoplasmic sperm injection for Rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and sperm aster assembly. Hum Reprod. 1996;11:1703–12.

    CAS  PubMed  Google Scholar 

  21. Terada Y, Luetjens CM, Sutovsky P, Schatten G. Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil Steril. 2000;74:454–60.

    Article  CAS  PubMed  Google Scholar 

  22. Katayama M, Koshida M, Miyake M. Fate of the acrosome in ooplasm in pigs after IVF and ICSI. Hum Reprod. 2002;17:2657–64.

    Article  CAS  PubMed  Google Scholar 

  23. Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in human and animals. Reprod Biomed Online. 2005;10:247–88.

    Article  PubMed  Google Scholar 

  24. Van Steirteghem A, Bonduelle M, Devroey P. Liebaers: follow-up of children born after ICSI. Hum Reprod. 2002;8:111–6.

    Article  Google Scholar 

  25. Seita Y, Junya ITO, Kashiwazaki N. Removal of acrosomal membrane from sperm head improves development of rat zygotes derived from intracytoplasmic sperm injection. J Reprod Dev 2009; (in press).

  26. Morozumi K, Yanagimachi R. Incorporation of the acrosome into the oocyte during intracytoplasmic sperm injection could be potentially hazardous to embryo development. Proc Natl Acad Sci. 2005;102:14209–14.

    Article  CAS  PubMed  Google Scholar 

  27. World Health Organization (WHO). Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 3rd ed. Cambridge: Cambridge University Press; 1992.

    Google Scholar 

  28. Fazeli A, Hage WJ, Cheng FP, Voorhout WF, Mark SA, Bevers MM, et al. Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol Reprod. 1997;56:430–8.

    Article  CAS  PubMed  Google Scholar 

  29. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17–8.

    Article  CAS  PubMed  Google Scholar 

  30. Mudrak O, Chandra R, Jones E, Godfrey E, Zalensky A. Reorganization of human sperm nuclear architecture during formation of pronuclei in a model system. Reprod Fertil Dev. 2009;21:665–71.

    Article  CAS  PubMed  Google Scholar 

  31. Van Roijen JH, Ooms MP, Spaargaren MC, Baarends WM, Weber RFA, Grootegoed JA, et al. Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod. 1998;13:1559–66.

    Article  PubMed  Google Scholar 

  32. Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, et al. Human testis/sperm specific histone H2B (hTSH2B); Molecular cloning and characterization. J Biol Chem. 2002;277:43474–80.

    Article  CAS  PubMed  Google Scholar 

  33. Singleton S, Mudrak O, Morshedi M, Oehninger S, Zalenskaya I, Zalensky A. Characterization of a human sperm cell subpopulation marked by the presence of the TSH2B histone. Reprod Fertil Dev. 2007;19:392–7.

    Article  CAS  PubMed  Google Scholar 

  34. Singleton S, Zalensky A, Doncel GF, Morshedi M, Zalenskaya IA. Testis/sperm-specific histone 2B in the sperm donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod. 2007;22:743–50.

    Article  CAS  PubMed  Google Scholar 

  35. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, editors. The physiology of reproduction. 2nd ed. New York: Raven; 1994. p. 189–317.

    Google Scholar 

  36. Ahmadi A, Ng SC. Fertilization and development of mouse oocytes injected with membrane-damaged spermatozoa. Hum Reprod. 1997;12:2797–801.

    Article  CAS  PubMed  Google Scholar 

  37. Kasai T, Hoshi K, Yanagimachi R. Effect of sperm immobilization and demembranation on the oocyte activation rate in the mouse. Zygote. 1999;7:187–93.

    Article  CAS  PubMed  Google Scholar 

  38. Manvelyan M, Hunstig F, Bhatt S, Mrasek K, Pellestor F, Weise A, et al. Chromosome distribution in human sperm—a 3D multicolor banding-study. Mol Cytogenet. 2008;14:1–25.

    Google Scholar 

  39. Adenot PG, Mercier Y, Renard JP, Thompson EM. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development. 1997;124:4615–25.

    CAS  PubMed  Google Scholar 

  40. Schultz RM, Worrad DM. Role of chromatin structure in zygotic gene activation in the mammalian embryo. Semin Cell Biol. 1995;6:201–8.

    Article  CAS  PubMed  Google Scholar 

  41. Zalensky A, Zalenskaya I. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans. 2007;35:609–11.

    Article  CAS  PubMed  Google Scholar 

  42. Bonduelle M, Liebaers I, Derde MP, Camus M, Devroey P, Van Steirtegham A. Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod. 2002;17:671–94.

    Article  PubMed  Google Scholar 

  43. Luetjens CM, Payne C, Schatten G. Non-random chromosome positioning in human sperm and sex chromosome anomalies following intracytoplasmic sperm injection. Lancet. 1999;353:1240.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei O. Zalensky.

Additional information

Capsule Human-hamster heterologous ICSI mimics sperm nuclei transformations that occur during natural fertilization in humans.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10815-010-9410-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, E.L., Mudrak, O. & Zalensky, A.O. Kinetics of human male pronuclear development in a heterologous ICSI model. J Assist Reprod Genet 27, 277–283 (2010). https://doi.org/10.1007/s10815-010-9402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9402-y

Keywords

Navigation