Skip to main content
Log in

The reproductive outcome of female patients with myotonic dystrophy type 1 (DM1) undergoing PGD is not affected by the size of the expanded CTG repeat tract

  • GENETICS
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aims to analyze the relationship between trinucleotide repeat length and reproductive outcome in a large cohort of DM1 patients undergoing ICSI and PGD.

Methods

Prospective cohort study. The effect of trinucleotide repeat length on reproductive outcome per patient was analyzed using bivariate analysis (T-test) and multivariate analysis using Kaplan-Meier and Cox regression analysis.

Results

Between 1995 and 2005, 205 cycles of ICSI and PGD were carried out for DM1 in 78 couples. The number of trinucleotide repeats does not have an influence on reproductive outcome when adjusted for age, BMI, basal FSH values, parity, infertility status and male or female affected. Cox regression analysis indicates that cumulative live birth rate is not influenced by the number of trinucleotide repeats. The only factor with a significant effect is age (p < 0.05).

Conclusion

There is no evidence of an effect of trinucleotide repeat length on reproductive outcome in patients undergoing ICSI and PGD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brook JD, McCurragh ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of the trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;69:385.

    CAS  PubMed  Google Scholar 

  2. Mahadevan M, Tsilfidis C, Sabourin L, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 1992;255:1253–5.

    Article  CAS  PubMed  Google Scholar 

  3. Harper PS, Harley HG, Reardon W, Shaw DJ. Review article: anticipation in myotonic dystrophy: new light on an old problem. Am J Hum Genet. 1992;51:10–6.

    CAS  PubMed  Google Scholar 

  4. Cho DH, Tapscott SJ. Myotonic dystrophy: emerging mechanisme for DM1 and DM2. Review. Biochim Biophys Acta. 2007;1772:195–204.

    CAS  PubMed  Google Scholar 

  5. Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve. 2005;32:1–18.

    Article  CAS  PubMed  Google Scholar 

  6. Gennarelli M, Novelli G, Bassi A, et al. Prediction of myotonic dystrophy clinical severity based on the number of intragenic (CTG) trinucleotide repeats. Am J Med Genet. 1996;65:342–7.

    Article  CAS  PubMed  Google Scholar 

  7. Harper P. Myotonic dystrophy and other autosomal muscular dystrophies. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular basis of inherited disease. New York: McGraw-Hill; 1995. p. 4227–53.

    Google Scholar 

  8. Verpoest W, De Rademaeker M, Sermon K, et al. Real and expected delivery rates of patients with myotonic dystrophy undergoing intracytoplasmic sperm injection and preimplantation genetic diagnosis. Hum Reprod. 2008;23:1654–60.

    Article  CAS  PubMed  Google Scholar 

  9. Sermon K, Lissens W, Joris H, et al. Clinical application of preimplantation diagnosis for myotonic dystrophy. Prenat Diagn. 1997;17:925–32.

    Article  CAS  PubMed  Google Scholar 

  10. Sermon K, De Vos A, Van De Velde H, et al. Fluorescent PCR and automated fragment analysis for the clinical application of preimplantation genetic diagnosis (Steinert’s disease). Mol Hum Reprod. 1998;4:791–6.

    Article  CAS  PubMed  Google Scholar 

  11. Warner JP, Barron LH, Goudie D, et al. A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet. 1996;33:1022–6.

    Article  CAS  PubMed  Google Scholar 

  12. Sermon K, Seneca S, De Rycke M, Goossens V, et al. PGD in the lab for triplet repeat diseases-myotonic dystrophy, Huntington’s disease and Fragile-X syndrome. Mol Cell Endocrinol. 2001;183:S77–8.

    Article  CAS  PubMed  Google Scholar 

  13. Van de Velde H, De Vos A, Joris H, Nagy ZP, Van Steirteghem AC. Effect of timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13:3160–4.

    Article  PubMed  Google Scholar 

  14. Kolibianakis EM, Zikopoulos K, Verpoest W, et al. Should we advise patients undergoing IVF to start a cycle leading to a day 3 or a day 5 transfer? Hum Reprod. 2004;19:2550–4.

    Article  CAS  PubMed  Google Scholar 

  15. Van Landuyt L, De Vos A, Joris H, Verheyen G, Devroey P, Van Steirteghem A. Blastocyst formation in in vitro fertilization versus intracytoplasmic sperm injection cycles: influence of the fertilization procedure. Fertil Steril. 2005;83:1397–403.

    Article  PubMed  Google Scholar 

  16. Liebaers I, Sermon K, Staessen C, et al. Clinical experience with preimplantation genetic diagnosis and intracytoplasmic sperm injection. Hum Reprod. 1998;13 suppl 1:186–95.

    PubMed  Google Scholar 

  17. Bonduelle M, Liebaers I, Deketelaere V, et al. Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod. 2002;17:671–94.

    Article  PubMed  Google Scholar 

  18. Zegers-Hochschild F, Adamson GD, de Mouzon J, et al. International Committee for Monitoring Assisted Reproductive Technology; World Health Organization. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod. 2009;24:2683–7.

    Article  CAS  PubMed  Google Scholar 

  19. Hull MG. Infertility treatment: relative effectiveness of conventional and assisted conception methods. Hum Reprod. 1992;7:785–96.

    CAS  PubMed  Google Scholar 

  20. Osmanogaoglu K, Tournaye H, Camus M, Vandervorst M, Van Steirteghem A, Devroey P. Cumulative delivery rates after intracytoplasmic sperm injection: 5 year follow up of 498 patients. Hum Reprod. 1999;14:2651–5.

    Article  Google Scholar 

  21. White RJ. Case report. Anaesthetic management of a patient with myotonic dystrophy. Paed Anaesth. 2001;11:494–7.

    Article  CAS  Google Scholar 

  22. White RJ, Bass SP. Review article. Myotonic dystrophy and paediatric anaesthesia. Paed Anaesth. 2003;13:94–102.

    Article  CAS  Google Scholar 

  23. Sagel J, Distiller LA, Morley JE, Isaacs H, Kay G, Van Der Walt A. Myotonia dystrophica: studies on gonadal function using luteinizing hormone-releasing hormone (LRH). J Clin Endocrinol Metab. 1975;40:1110–3.

    Article  CAS  PubMed  Google Scholar 

  24. Feyereisen E, Amar A, Kerbrat V, et al. Myotonic dystrophy: does it affect ovarian follicular status and responsiveness to controlled ovarian stimulation? Hum Reprod. 2006;21:175–82.

    Article  CAS  PubMed  Google Scholar 

  25. Sahu B, Ozturk O, Deo N, Fordham K, Ranierri M, Serhal P. Response to controlled ovarian stimulation and oocyte quality in women with myotonic dystrophy type I. J Assist Reprod Genet. 2008;25:1–5.

    Article  PubMed  Google Scholar 

  26. Winchester CL, Ferrier RK, Sermoni A, Clark BJ, Johnson KJ. Characterization of the expression of DMPK and SIX5 in the human eye and implications for pathogenesis in myotonic dystrophy. Hum Mol Genet. 1999;8:481–92.

    Article  CAS  PubMed  Google Scholar 

  27. O’Cochlain DF, Perez-Terzic C, Reyes S, et al. Transgenic overexpression of human DMPK accumulates into hypertrophic cardiomyopathy, myotonic myopathy and hypotension traits of myotonic dystrophy. Hum Mol Genet. 2004;13:2505–18.

    Article  PubMed  Google Scholar 

  28. Amack JD, Mahadevan MS. Myogenic defects in myotonic dystrophy. Dev Biol. 2004;265:294–301.

    Article  CAS  PubMed  Google Scholar 

  29. Sarkar PS, Paul S, Han J, Reddy S. Six5 is required for spermatogenic cell survival and spermiogenesis. Hum Mol Genet. 2004;13:1421–31.

    Article  CAS  PubMed  Google Scholar 

  30. Martorell L, Monckton DG, Gamez J, Baiget M. Complex patterns of male germline instability and somatic mosaicism in myotonic dystrophy type 1. Eur J Hum Genet. 2000;8:423–30.

    Article  CAS  PubMed  Google Scholar 

  31. Thornton CA, Johnson KJ, Moxley RT. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol. 1994;31:518–20.

    Google Scholar 

  32. Monckton DG, Wong L-JC, Ashizawa T, Caskey CT. Somatic mosaicsim, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum Mol Genet. 1995;4:1–8.

    CAS  PubMed  Google Scholar 

  33. Osmanogaoglu K, Tournaye H, Kolibianakis E, Camus M, Van Steirteghem A, Devroey P. Cumulative delivery rates after ICSI in women aged >37 years. Hum Reprod. 2002;17:940–4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the clinical, laboratory, technical, nursing and secretarial staff at the Centres for Reproductive Medicine and Medical Genetics at UZ Brussel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Verpoest.

Additional information

Capsule

The number of CTG repeats in myotonic dystrophy type 1 (DM1) is not correlated with the reproductive outcome of ICSI and PGD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verpoest, W., Seneca, S., De Rademaeker, M. et al. The reproductive outcome of female patients with myotonic dystrophy type 1 (DM1) undergoing PGD is not affected by the size of the expanded CTG repeat tract. J Assist Reprod Genet 27, 327–333 (2010). https://doi.org/10.1007/s10815-010-9392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9392-9

Keywords

Navigation