Journal of Assisted Reproduction and Genetics

, Volume 27, Issue 1, pp 49–59 | Cite as

Analysis of apoptosis and methyltransferase mRNA expression in porcine cloned embryos cultured in vitro

  • Shiqiang Ju
  • Rong Rui
  • Qing Lu
  • Pengfei Lin
  • Huili Guo



The purpose of this study was to investigate the relationship of porcine somatic cell nuclear transfer (SCNT) embryo developmental competence with embryonic cell apoptosis and DNA methylation.


The apoptotic incidence was examined via comet assay, and the mRNA expression of genes implicated in apoptosis (Bcl-2) and DNA methylation (Dnmt1, Dnmt3a) was determined using real-time RT-PCR.


Comet assay showed that the SCNT embryos exhibited significantly higher apoptotic rate at 2-cell stage (8.3% versus 2.1%, P < 0.05), 16-cell stage (27.3% versus 19.2%, P < 0.05) and morula (37.5% versus 26.9, P < 0.05) compared with IVF embryos. Compared with IVF embryos, a higher Bcl-2 mRNA expression pattern was observed in SCNT embryos before the 8-cell stage and differed significantly at 2- and 4-cell stages (P < 0.05). After the 16-stage, Bcl-2 mRNA expression pattern became significantly lower in SCNT group (P < 0.05). The relative expression level of Dnmt1 mRNA showed a higher expression level in oocytes, then sharply decreased and started to increase slightly after the 8-cell (IVF embryos) or 16-cell stage (SCNT embryos). Dnmt1 mRNA expression in IVF embryos appeared to have been lower than that of SCNT group before 16-cell stage embryos, especially at 4- and 8-cell stages (P < 0.05). Although a trend for a similar increase of Dnmt3a expression was observed in IVF and SCNT embryos after 8-cell embryos, SCNT group resulted in much higher Dnmt3a mRNA abundance compared with the IVF group, particularly after 16-cell embryos (P < 0.05).


The results showed that low efficiency of porcine SCNT technology may be associated with either embryonic apoptosis or incomplete reprogramming of donor nuclear caused by abnormal Dnmts mRNA expression.


Swine Somatic cell nuclear transfer Apoptosis DNA methylation 



The research was granted by National Research & Development Program of High-tech (2008AA101003) and “11th Five Years” Scientific Supporting Program of the Ministry of Agriculture of China (2008BADB2B11). We particularly thank Dr. Gary B. Anderson from the Department of Animal Science, University of California, Davis, for his comments and help with revision in English.


  1. 1.
    Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer. Science. 2002;295(5557):1089–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Rogatcheva MM, Rund LA, Swanson KS, Marron BM, Beever JE, Counter CM, et al. Creating porcine biomedical models through recombineering. Comp Funct Genomics. 2004;5(3):262–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Fujimura T, Takahagi Y, Shigehisa T, Nagashima H, Miyagawa S, Shirakura R, et al. Production of alpha 1, 3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1, 3-Gal antigen-deficient cells. Mol Reprod Dev. 2008;75(9):1372–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature. 2000;407:86–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Im GS, Lai L, Liu Z, Hao Y, Wax D, Bonk A, et al. In vitro development of preimplantation porcine nuclear transfer embryos cultured in different media and gas atmospheres. Theriogenology. 2004;61(6):1125–35.CrossRefPubMedGoogle Scholar
  6. 6.
    McElroy SL, Kim JH, Kim S, Jeong YW, Lee EG, Park SM, et al. Effects of culture conditions and nuclear transfer protocols on blastocyst formation and mRNA expression in pre-implantation porcine embryos. Theriogenology. 2008;69(4):416–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Lai L, Prather RS. Production of cloned pigs by using somatic cells as donors. Clonging Stem Cells. 2003;5(4):233–41.CrossRefGoogle Scholar
  8. 8.
    Walker SC, Shin TY, Zaunbrecher GM, Romano JE, Johnson GA, Bazer FW, et al. A highly efficient method for porcine cloning by nuclear transfer using in vitro-matured oocytes. Cloning Stem Cells. 2002;4(2):105–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Fabian D, Koppel J, Maddox-Hyttel P. Apoptotic processes during mammalian preimplantation development. Theriogenology. 2005;64(2):221–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Betts DH, King WA. Genetic regulation of embryo death and senescence. Theriogenology. 2001;55(1):171–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Brison DR, Schultz RM. Apoptosis during mouse blastocormation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod. 1997;56(5):1088–96.CrossRefPubMedGoogle Scholar
  12. 12.
    Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol. 2002;172(2):221–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Kamjoo M, Brison DR, Kimber SJ. Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture. Mol Reprod Dev. 2002;61(1):67–77.CrossRefPubMedGoogle Scholar
  14. 14.
    Fahrudin M, Otoi T, Karja NW, Mori M, Murakami M, Suzuki T. Analysis of DNA fragmentation in bovine somatic nuclear transfer embryos using TUNEL. Reproduction. 2002;124(6):813–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Hao Y, Lai L, Mao J, Im GS, Bonk A, Prather RS. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol Reprod. 2003;69(2):501–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Fabian D, Rehák P, Czikková S, Il’ková G, Baran V, Koppel J. Induced cell death of preimplantation mouse embryos cultured in vitro evaluated by comet assay. Theriogenology. 2003;60(4):691–706.CrossRefPubMedGoogle Scholar
  17. 17.
    Dhawan A, Bajpayee M, Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol. 2009;25(1):5–32.CrossRefPubMedGoogle Scholar
  18. 18.
    Wrenzycki C, Wells D, Herrmann D, Miller A, Oliver J, Tervit R, et al. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod. 2001;65(1):309–17.CrossRefPubMedGoogle Scholar
  19. 19.
    Bourc’his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol. 2001;11(19):1542–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen T, Li E. Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol. 2006;301:179–201.CrossRefPubMedGoogle Scholar
  21. 21.
    Han YM, Kang YK, Koo DB, Lee KK. Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology. 2003;59(1):33–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc Natl Acad Sci. 2001;98(24):13734–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen T, Zhang YL, Jiang Y, Liu SZ, Schatten H, Chen DY, et al. The DNA methylation events in normal and cloned rabbit embryos. FEBS Lett. 2004;578(1–2):69–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Kang YK, Koo DB, Park JS, Choi YH, Kim HN, Chang WK, et al. Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. J Biol Chem. 2001;276(43):39980–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Bonk AJ, Li R, Lai L, Hao Y, Liu Z, Samuel M, et al. Aberrant DNA methylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced blastocysts. Mol Reprod Dev. 2008;75(2):250–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu C, Rui R, Dai J, Zhang C, Ju S, Xie B, et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol Reprod Dev. 2006;73(11):1454–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Boquest AC, Grupen CG, Harrison SJ, McIlfatrick SM, Ashman RJ, d’Apice AJ, et al. Production of cloned pigs from cultured fetal fibroblast cells. Biol Reprod. 2002;66(5):1283–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Johnson LA, Weitze KF, Fiser P, Maxwell WM. Storage of boar semen. Anim Reprod Sci. 2000;62(1–3):143–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Nam DH, Lee SH, Kim HS, Lee GS, Jeong YW, Kim S, et al. The role of gonadotropin releasing hormone (GnRH) and its receptor in development of porcine preimplantation embryos derived from in vitro fertilization. Theriogenology. 2005;63(1):190–201.CrossRefPubMedGoogle Scholar
  30. 30.
    Men H, Monson RL, Parrish JJ, Rutledge JJ. Detection of DNA damage in bovine metaphase II oocytes resulting from cryopreservation. Mol Reprod Dev. 2003;64(2):245–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Ju SQ, Rui R, Lu Q, Cao AQ, Li N, Lin PF, et al. Experiment on production in vitro of porcine somatic cell cloned embryos. Scientia Agricultura Sinica. 2009;42(4):1386–93. in Chinese.Google Scholar
  33. 33.
    Dominko T, Chan A, Simerly C, Luetjens CM, Hewitson L, Martinovich C, et al. Dynamic imaging of the metaphase II spindle and maternal chromosomesin bovine oocytes: implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis. Biol Reprod. 2000;62(1):150–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee K, Hyslop JM, Nanassy L, Machaty Z. Incidence of apoptosis in parthenogenetic porcine embryos generated by using protein kinase or protein synthesis inhibitors. Anim Reprod Sci. 2009;112(3–4):261–72.CrossRefPubMedGoogle Scholar
  35. 35.
    Darzynkiewicz Z, Bedner E, Traganos F. Difficulties and pitfalls in analysis of apoptosis. Methods Cell Biol. 2001;63:527–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Gjørret JO, Knijn HM, Dieleman SJ, Avery B, Larsson LI, Maddox-Hyttel P. Chronology of apoptosis in bovine embryos produced in vivo and in vitro. Biol Reprod. 2003;69(4):1193–200.CrossRefPubMedGoogle Scholar
  37. 37.
    Metcalfe AD, Hunter HR, Bloor DJ, Lieberman BA, Picton HM, Leese HJ, et al. Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation. Mol Reprod Dev. 2004;68(1):35–50.CrossRefPubMedGoogle Scholar
  38. 38.
    Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10(8):475–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Beaujean N, Hartshorne G, Cavilla J, Taylor J, Gardner J, Wilmut I, et al. Non-conservation of mammalian preimplantation methylation dynamics. Curr Biol. 2004;14(7):R266–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Fulka H, Mrazek M, Tepla O, Fulka Jr J. DNA methylation pattern in human zygotes and developing embryos. Reproduction. 2004;128(6):703–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Fulka J, Fulka H, Slavik T, Okada K, Fulka Jr J. DNA methylation pattern in pig in vivo produced embryos. Histochem Cell Biol. 2006;126(2):213–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73.CrossRefPubMedGoogle Scholar
  43. 43.
    Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK, et al. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet. 2001;28(2):173–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhu H, Craig JA, Dyce PW, Sunnen N, Li J. Embryos derived from porcine skin-derived stem cells exhibit enhanced preimplantation development. Biol Reprod. 2004;71(6):1890–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Suteevun T, Smith SL, Muenthaisong S, Yang X, Parnpai R, Tian XC. Anomalous mRNA levels of chromatin remodeling genes in swamp buffalo (Bubalus bubalis) cloned embryos. Theriogenology. 2006;65(9):1704–15.CrossRefPubMedGoogle Scholar
  46. 46.
    Kwon DJ, Park CK, Yang BK, Cheong HT. Control of nuclear remodelling and subsequent in vitro development and methylation status of porcine nuclear transfer embryos. Reproduction. 2008;135(5):649–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Chung YG, Ratnam S, Chaillet JR, Latham KE. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biol Reprod. 2003;69(1):146–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol. 2003;13(13):1116–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Schultz RM. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update. 2002;8(4):323–31.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shiqiang Ju
    • 1
  • Rong Rui
    • 1
  • Qing Lu
    • 1
  • Pengfei Lin
    • 1
  • Huili Guo
    • 1
  1. 1.College of Veterinary MedicineNanjing Agricultural UniversityJiangsuChina

Personalised recommendations