Journal of Assisted Reproduction and Genetics

, Volume 26, Issue 8, pp 467–473 | Cite as

Development of a new method to preserve caprine cauda epididymal spermatozoa in-situ at -10°C with electrolyte free medium

  • Uttam DattaEmail author
  • M. Chandra Sekar
  • Manik Lal Hembram
  • Raju Dasgupta
Animal Experimentation in Assisted Reproduction



In-situ preservation of cauda epididymal spermatozoa at -10°C with electrolyte free media for obtaining maximum functional gametes than preservation at 5°C.


Electrolyte free media prepared with soybean lecithin-glycerol, Coenzyme Q10 — glycerol and soybean lecithin — Coenzyme Q10— glycerol were inoculated separately into ligated cauda epididymides, equilibrated 2 h at 5°C, wrapped with aluminium foil and freezed at — 10°C. Spermatozoan characters were evaluated 7 and 21 days after thawing at 38.5°C in a water bath for 5 min.


Spermatozoan characteristics were diminished gradually and significantly (p < 0.001, p < 0.05) between the media and observation days. Soybean lecithin-CoenzymeQ10-glycerol effectively protected spermatozoa against cold shock where spermatozoan progressive motility, viability, hypo-osmotic swelling positivity were 30.2 ± 0.62; 45.2 ± 0.82 and 41.6 ± 0.79 percent respectively on day 21.


This method can be adopted in field conditions for transportation of frozen epididymides and re-utilization of maximum functional gametes to conserve valuable animals after postmortem / slaughter.


Coenzyme Q10 Electrolyte free medium Epididymal spermatozoa Freezing Hypo-osmotic swelling test 


  1. 1.
    Foote RH. Letter to the Editor. J. Androl. 2000;21(3):355.PubMedGoogle Scholar
  2. 2.
    Anel L, Guerra C, Alvarez M, Kaabi M, Anel E, Boixo JC, et al. Basic parameters in spermatozoa recovered post-mortem from the Spanish Cantabrian Chamois (Rupicapra pyrenaica parva). Theriogenology. 2000;53(1):323. abstract.Google Scholar
  3. 3.
    Blash S, Melican D, Gavin W. Cryopreservation of epididymal sperm obtained at necropsy from goats. Theriogenology. 2000;54(6):899–905.CrossRefPubMedGoogle Scholar
  4. 4.
    Kilian I, Lubbe K, Bartels P, Friedmann Y, Denniston RS. Evaluating epididymal sperm of African wild ruminants: Longevity when stored at 4°C and viability following cryopreservation. Theriogenology. 2000;53(1):330. abstract.Google Scholar
  5. 5.
    Lubbe K, Bartels P, Kilian I, Friedmann Y, Godke RA. Comparing motility and morphology of horse, zebra and rhinoceros epididymal spermatozoa when cryopreserved with two different cryodiluents or stored at 4°C. Theriogenology. 2000;53(1):338. abstract.Google Scholar
  6. 6.
    Soler AJ, Perez-guzman MD, Grade J. Storage of red deer epididymides for four days at 5°C: effects on motility, viability and morphological integrity. J. Exp. Zool. Part A: Comparative Exp. Biol. 2003;295A:188–99.CrossRefGoogle Scholar
  7. 7.
    Martinez-Pastor F, Guerra C, Kabbi M, Diaz AR, Anel E, Herraez P, et al. Decay of sperm obtained from epididymis of wild ruminants depending on postmortem time. Theriogenology. 2005;63(1):24–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Dong Q, Rodenberg SE, Huang C, Vandevoort CA. Cryopreservation of Rhesus monkey (Macaca muitatta) epididymal spermatozoa before and after refrigerated storage. J. Androl. 2008;29(3):283–92.CrossRefPubMedGoogle Scholar
  9. 9.
    James AN, Green H, Hoffman S, Landry AM, Paccamonti D, Godke RA. Preservation of equine sperm stored in the epididymides at 4°C for 24, 48, 72 and 96 Hours. Theriogenology. 2002;58:401–4.CrossRefGoogle Scholar
  10. 10.
    Yu I, Leibo SP. Recovery of motile, membrane-intact spermatozoa from canine epididymides stored for 8 days at 4°C. Theriogenology. 2002;57:1179–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Fournier-Delpech S, Colas G, Courot M, Ortavant R, Brice G. Epididymal sperm maturation in the ram: motility, fertilizing ability and embryonic survival after uterine artificial insemination. Ann. Biol. Anim. Bioch. Biophys. 1979;19(3A):597–605.CrossRefGoogle Scholar
  12. 12.
    Niwa K, Ohara K, Hosoi Y, Iritani A. Early events of in-vitro fertilization of cat eggs by epididymal spermatozoa. J. Reprod. Fertil. 1985;74(2):657–60.PubMedGoogle Scholar
  13. 13.
    Temple-Smith PD, Southwick GJ, Yates CA, Trounson AO, de Kretser DM. Human pregnancy by in vitro fertilization (IVF) using sperm aspirated from the epididymis. J. In Vitro Fertil. Embryo Transfer. 1985;2:119–222.CrossRefGoogle Scholar
  14. 14.
    Marks SL, Dupuis J, Mickelsen WD, Memon MA, Platz CC. Conception by use of postmortem epididymal semen extraction in a dog. J. Anim. Vet. Med. Assoc. 1994;204(10):1639–40.Google Scholar
  15. 15.
    Graff KJ, Chandler JE, Reggio BC, Lim JM, Canal A, Carter JA, Meintjes M, Godke RA: Pregnancies obtained from IVF with noncapacitated epididymal bovine spermatozoa. Proc. 3rd Intern’l. Mtg. Biotech. Anim. Reprod. Cairo, Egypt (Nov. 2–6). 1996: pp. 19–21.Google Scholar
  16. 16.
    Bonduel M, Wilikens A, Buysse A, Van Assche E, Devroey P, Van Steirteghem AC, et al. A follow-up study of children born after intracytoplasmic sperm injection (ICSI) with epididymal and testicular spermatozoa and after replacement of cryopreserved embryos obtained after ICSI. Hum. Reprod. 1998;13(Suppl 1):196–207.Google Scholar
  17. 17.
    Morrell JM, Nubbemeyer R, Heistermann M, Rosenbusch J, Kuderling I, Holt W, et al. Artificial insemination in Callithrix jacchus using fresh or cryopreserved sperm. Anim. Reprod. Sci. 1998;52(2):165–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Bartels P, Lubbe K, Kilian I, Friedmann Y, van Dyk G, Mortimer D. In vitro maturation and fertilization of lion (Panthera leo) oocytes using frozen-thawed epididymal spermatozoa recovered by cauda epididymectomy of an immobilized lion. Theriogenology. 2000;53(1):325. abstract.Google Scholar
  19. 19.
    Kusunoki H, Daimaru H, Miami S, Nishimoto S, Yamane K-I, Fukumoto Y. Birth of a chimpanzee (Pan troglodytes) after artificial insemination with cryopreserved epididymal spermatozoa collected postmortem. Zoo. Biol. 2001;20:135–43.CrossRefGoogle Scholar
  20. 20.
    Ikeda H, Kikuchi K, Noguchi J, Takeda H, Shimada A, Mizokami T, et al. Effect of preincubation of cryopreserved porcine epididymal sperm. Theriogenology. 2002;57:1309–18.CrossRefPubMedGoogle Scholar
  21. 21.
    Martins CF, Rumpf R, Pereira DC, Dode MN. Cryopreservation of epididymal bovine spermatozoa from dead animals and its use in in-vitro embryo production. Anim. Reprod. Sci. 2007;101:326–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Said S, dan Saili T. Rescuing genetic material of unexpectedly die animal. Jurnal Ilmu Ternak dan Veteriner. 2007;12(2):147–52.Google Scholar
  23. 23.
    World health Organization: WHO Laboratory manual for the examinations of human semen and sperm-cervical mucus interaction (3e). Cambridge; The press syndicated of the University of Cambridge. 1997.Google Scholar
  24. 24.
    Sidhu KS, Guraya SS: In: Buffalo bull semen morphology, biochemistry, physiology and methodology. USA publishers and distributors, Ludhiana, India. 1985a; 152–154.Google Scholar
  25. 25.
    Jeyendran RS, Vandervent HH, Perez-Paleac ZM, Crabo BG, Zaneveld LJD. Development of an assay to assess the functional integrity of human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 1984;70:219–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Duncan DB. Multiple range and multiple F tests. Biometrics. 1955;11:1–42.CrossRefGoogle Scholar
  27. 27.
    Scott TW, Voglmayer JK, Setchell BP. Lipid composition and metabolism in testicular and ejaculated spermatozoa. The Biochemical Journal. 1967;102:456–60.PubMedGoogle Scholar
  28. 28.
    Arora R, Dinakar N, Prasad MRN. Biochemical changes in the spermatozoa and luminal contents of different regions of the epididymis of the rhesus monkey, Macaca mulalta. Contraception. 1975;11:689–700.CrossRefPubMedGoogle Scholar
  29. 29.
    Hammerstedt RH, Keith AD, Hay S, Deluca N, Amann RP. Changes in ram sperm membrane during epididymis transit. Arch. Biochem. Biophys. 1979;196:7–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Thun R, Hurtado M, Janett F. Comparison of Biociphos-plus and TRIS-egg yolk extender for cryopreservation of bull semen. Theriogenology. 2002;57:1087–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Mancini A, Marinis LD, Oradei A, Hallgass ME, Conte G, Pozza D, et al. Coenzyme Q10 concentration in normal and pathological Human seminal fluid’s. J. Androl. 1994;15(6):591–4.PubMedGoogle Scholar
  32. 32.
    Jones R, Mann T. Damage to ram spermatozoa by peroxidation of endogenous phospholipids. J.Reprod. Fertil. 1977;50:261–8.PubMedGoogle Scholar
  33. 33.
    Ernster L, Forsneark-Andree P. Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin. Invest. 1993;71:S60–65.CrossRefGoogle Scholar
  34. 34.
    Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochem. Biophys. Acta. 1995;1271:195–204.PubMedGoogle Scholar
  35. 35.
    Lewin A, Lavon H. The effect of Coenzyme Q10 on sperm motility and function. Molecular Aspects of Medicine. 1997;18(Suppl):S 213–9.Google Scholar
  36. 36.
    Thomas SR, Neuzil J, Stocker R. Co supplementation with coenzyme Q prevents the prooxidant effects of alphatocopherol and increase the resistance of LDL to transition metal-dependent oxidation initiation. Arterioscler. Thromb. Vasc. Biol. 1996;16:687–96.PubMedGoogle Scholar
  37. 37.
    Thomas SR, Neuzil J, Stocker R. Inhibition of LDL oxidation by ubiquinone-10. A protective mechanism for coenzyme Q in atherogenesis? Mol.Aspects. Med. 1997;18:S85–103.CrossRefPubMedGoogle Scholar
  38. 38.
    Booth NH, McDonald LE. Veterinary pharmacology and Therapeutics. 6th ed. New Delhi: Kalyani publisher; 1982.Google Scholar
  39. 39.
    Mazzilli F, Cerasaro M, Bisanti A, Rossi T, Dondero F: Seminal parameters and the swelling test in patients with sperm before and after treatment with ubiquinone (CoQ10). 2nd international symposium on reproductive medicine. Acta Medica, Edizioni e Congresi, Rome, Italy: Fiuggi. 1988; 71.Google Scholar
  40. 40.
    Ball BA, Vo AT, Baumber J. Reactive oxygen species generation by equine spermatozoa. Am. J. Vet. Res. 2001;62:5508–15.CrossRefGoogle Scholar
  41. 41.
    Hammerstedt RH, Graham JK, Nolan JP. Cryopreservation of mammalian sperm: What we ask them to survive. J. Androl. 1990;11:73–88.PubMedGoogle Scholar
  42. 42.
    Riddle VM, Lorenz N. Nonenzymic formulation of toxic levels of methylglyoxal from glycerol and dihydroxyacetone in Ringers phosphate suspensions of avian spermatozoa. Biochem, Biophy. Res. Commun. 1973;50:27–34.CrossRefGoogle Scholar
  43. 43.
    Fahy GM, Lilley TH, Linsdell H, Douglas MS, Meryman HT. Cryoprotectant toxicity and cryoprotectant toxicity reduction: In search of molecular mechanisms. Cryobiol. 1990;27:247–68.CrossRefGoogle Scholar
  44. 44.
    Watson PF. The effects of cold shock on sperm cell membranes. In: Morris GJ, Clark A, editors. Effects of Low temperatures on Biological membranes. London: Academic; 1981. p. 189–218.Google Scholar
  45. 45.
    Rodojcic L, Vukotic-Maletic V, Balint B. Current Knowledge on cryopreservation of spermattzoa, ovum cells and zygotes. Medicinski pregled. 1998;51(1–2):29–36.Google Scholar
  46. 46.
    Curry MR, Watson PF. Osmotic effects on ram and human sperm membranes in relation to thawing injury. Cryobiology. 1994;31(1):39–46.CrossRefPubMedGoogle Scholar
  47. 47.
    Watson PF. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertility. Dev. 1995;7:747–869.CrossRefGoogle Scholar
  48. 48.
    Harrison RAP, White IG. Glycolytic enzymes in the spermatozoa and cytoplasmic droplets of bull, boar and ram and their leakage after shock. J Reprod Fertil. 1972;30:105–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Simpson AM, White IG. Effect of cold shock and cooling rate on calcium uptake of ram spermatozoa. Anim. Reprod. Sci. 1986;12:131–43.CrossRefGoogle Scholar
  50. 50.
    Robertson L, Bailey JL, Buhr MM. Effects of cold shock and phospholipase A2 on intact boar spermatozoa and sperm head plasma membranes. Mol. Reprod Dev. 1990;26:143–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Cotran RS, Kumar V, Robbins SL. Robbin’s Pathologic basis of disease. 4th ed. Philadelphia: WB Saunders Co; 1989. p. 9–16.Google Scholar
  52. 52.
    Bilodeau JF, Chatterjee S, Sired MA, Gagnon C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 2000;55:282–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Quinn PJ. Principles of membrane stability and phase behavior under extreme conditions. J Bioenerg Biomembr. 1989;21:3–19.CrossRefPubMedGoogle Scholar
  54. 54.
    Holt WV, North RD. The role of membrane —active lipids in the protection of ram spermatozoa during cooling and storage. Gamete Res. 1988;19:77–89.CrossRefPubMedGoogle Scholar
  55. 55.
    De Leeuw FE, Chen HC, Colenbrander B, Verkleji AJ. Cold-induced ultra structural changes in bull and boar sperm plasma membranes. Cryobiology. 1990;27:171–83.CrossRefPubMedGoogle Scholar
  56. 56.
    Buhr MM, Curtis EF, Kakuda NS. Composition and behavior of head membrane lipids of fresh and cryopreserved boar sperm. Cryobiology. 1994;31:224–38.CrossRefPubMedGoogle Scholar
  57. 57.
    White IG. Lipids and calcium uptake of sperm in relation to cold shock and preservation: A review. Reproduction. Fertility. Dev. 1993;5(6):639–58.CrossRefGoogle Scholar
  58. 58.
    Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 1995;7:659–68.CrossRefPubMedGoogle Scholar
  59. 59.
    Drobinis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH. Cold shock damage is due to lipid phase transitions in cell-membranes-a demonstration using sperm as a model. J. Exp. Zool. 1993;265:432–7.CrossRefGoogle Scholar
  60. 60.
    Rao B, Soufir JC, Martin M. Lipid peroxidation in human spermatozoa as related to mid piece abnormalities and motility. Gamete Res. 1989;24:127–34.CrossRefPubMedGoogle Scholar
  61. 61.
    Aitken RJ, West K, Buckingham DW. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J. Androl. 1994;15:343–52.PubMedGoogle Scholar
  62. 62.
    Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MC. The effect of reactive species on equine sperm motility, viability, acrosomal integrity, mitochondria membrane potential, and membrane lipid peroxidation. J.Androl. 2001;21:895–902.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Uttam Datta
    • 1
    Email author
  • M. Chandra Sekar
    • 1
  • Manik Lal Hembram
    • 1
  • Raju Dasgupta
    • 2
  1. 1.Department of Veterinary Gynaecology & ObstetricsFaculty of Veterinary and Animal Sciences West Bengal University of ANIMAL and Fishery SciencesKolkataIndia
  2. 2.Department of Animal Genetics and BreedingFaculty of Veterinary and Animal Sciences West Bengal University of ANIMAL and Fishery SciencesKolkataIndia

Personalised recommendations