Skip to main content
Log in

Improvement of in vitro oocyte maturation with lectin supplementation and expression analysis of Cx43, GDF-9, FGF-4 and Fibronectin mRNA transcripts in Buffalo (Bubalus bubalis)

  • ANIMAL EXPERIMENTATION
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To optimize In vitro maturation (IVM) of quality oocytes for embryo production through IVF and SCNT.

Methods

Buffalo oocytes were in vitro matured in the presence of the pokeweed lectin (Phytolacca americana), a potent lymphocyte mitogen. Lectin was supplemented in TCM + 10% FBS at the doses of 0, 1, 5, 10, 15, 20 and 40 μg/ml and cumulus expansion and gene expression patterns were characterized.

Results

The degree of cumulus expansion in different lectin treatment levels improved from 1.1 at 1 Ag/ml level to 3.60 at 10 μg/ml level and then decreased in higher concentration 20 μg/ml (1.66) and 40 μg/ml (0.64). IVF embryos showed highest cleavage rate (88.8%) in 10 μg/ml lectin treatment. Expression of all mRNA transcript studied (Cx43, GDF 9, FGF-4 and Fibronectin) was positively correlated with cumulus expansion and polar body extrusion.

Conclusions

Mitogenic lectin supplemented maturation media improves oocyte quality for in vitro embryo production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Song JL, Wessel GM. How to make an egg: transcriptional regulation in oocytes. Differentiation. 2005;73:1–17. doi:10.1111/j.1432-0436.2005.07301005.x.

    Article  PubMed  CAS  Google Scholar 

  2. Adjaye J, Monk M. Transcription of homeoboxcontaining genes detected in cDNA libraries derived from human unfertilized oocytes and preimplantation embryos. Mol Hum Reprod. 2000;6:707–11. doi:10.1093/molehr/6.8.707.

    Article  PubMed  CAS  Google Scholar 

  3. Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65:126–36. doi:10.1016/j.theriogenology.2005.09.020.

    Article  PubMed  Google Scholar 

  4. Sirard MA, Florman HM, Leibfried-Rutledge ML, Barnes FL, Sims ML, First NL. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol Reprod. 1989;40:1257–63. doi:10.1095/biolreprod40.6.1257.

    Article  PubMed  CAS  Google Scholar 

  5. Kastrop PM, Bevers MM, Destree OH, Kruip TA. Protein synthesis and phosphorylation patterns of bovine oocytes maturing in vivo. Mol Reprod Dev. 1991;29:271–5. doi:10.1002/mrd.1080290309.

    Article  PubMed  CAS  Google Scholar 

  6. Trimarchi JR, Keefe DL. Assessing the quality of oocytes derived from in vitro maturation: are we looking under the lamppost? Fertil Steril. 2006;85:839–40. doi:10.1016/j.fertnstert.2005.12.009.

    Article  PubMed  Google Scholar 

  7. Rizos D, Gutierrez-Adan A, Perez-Garnelo S, dela Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68:236–43. doi:10.1095/biolreprod.102.007799.

    Article  PubMed  CAS  Google Scholar 

  8. Eppig JJ. Gonadotropin stimulation of the expansion of cumulus oophori isolated from mice: general conditions for expansion in vitro. J Exp Zool. 1979;208:111–20. doi:10.1002/jez.1402080112.

    Article  PubMed  CAS  Google Scholar 

  9. Izadyar F, Zeinstra E, Bevers MM. Follicle stimulating hormone and growth hormone act differently on nuclear maturation while both enhance developmental competence of in vitro matured bovine oocytes. Mol Reprod Dev. 1998;51:339–45. doi:10.1002/(SICI)1098-2795(199811)51:3<339::AID-MRD14>3.0.CO;2-Y.

    Article  PubMed  CAS  Google Scholar 

  10. Zuelke KA, Brackett BG. Luteinizing hormone-enhanced in vitro maturation of bovine oocytes with and without protein supplementation. Biol Reprod. 1990;43:784–7. doi:10.1095/biolreprod43.5.784.

    Article  PubMed  CAS  Google Scholar 

  11. Calder MD, Caveney AN, Smith LC, Watson AJ. Responsiveness of bovine cumulus-oocyte-complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and Cx43 marker gene mRNAs during maturation in vitro. Reprod Biol Endocrinol. 2003;1:1–12. doi:10.1186/1477-7827-1-14.

    Article  Google Scholar 

  12. Cyert MS, Kirschner MW. Regulation of MPF activity in vitro. Cell. 1988;53:185–95. doi:10.1016/0092-8674(88)90380-7.

    Article  PubMed  CAS  Google Scholar 

  13. Nicholsan GL. the interaction of lectins with animal cell surface. Int Rev Cytol. 1974;39:89–190. doi:10.1016/S0074-7696(08)60939-0.

    Article  Google Scholar 

  14. Houghton FD. Role of gap junctions during early embryo development. Reproduction. 2005;129:129–35. doi:10.1530/rep. 1.00277.

    Article  PubMed  CAS  Google Scholar 

  15. Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Armstrong DT, Gilchrist RB. Role of Oocyte-Secreted Growth Differentiation Factor 9 in the Regulation of Mouse Cumulus Expansion. Endocrinology. 2005;146:2798–806. doi:10.1210/en.2005-0098.

    Article  PubMed  CAS  Google Scholar 

  16. Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, et al. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod. 2002;67:767–75. doi:10.1095/biolreprod.102.004481.

    Article  PubMed  CAS  Google Scholar 

  17. Goossens K, Van Soom A, Van Zeveren A, Favoreel H, Peelman LJ. Quantification of Fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev Biol. 2009;9:1. doi:10.1186/1471-213X-9-1.

    Article  PubMed  Google Scholar 

  18. Fagbohun CF, Downs SM. Maturation of the mouse oocyte-cumulus cell complex: stimulation by Lectins. Biol Reprod. 1990;42:413–23. doi:10.1095/biolreprod42.3.413.

    Article  PubMed  CAS  Google Scholar 

  19. Vanderhyden BC, Armstrong DT. Effects of gonadotropins and granulosa cell secretions on the maturation and fertilization of rat oocytes in vitro. Mol Reprod Dev. 1990;26:337–46. doi:10.1002/mrd.1080260408.

    Article  PubMed  CAS  Google Scholar 

  20. Madan ML, Singla SK, Chauhan MS, Manik RS. In vitro production and transfer of embryos in buffaloes. Theriogenology. 1994;41:139–43. doi:10.1016/S0093-691X(05)80059-7.

    Article  Google Scholar 

  21. Brackett BG, Oliphant G. Capacitation of rabbit spermatozova in vitro. Biol Reprod. 1975;12:260–74. doi:10.1095/biolreprod12.2.260.

    Article  PubMed  CAS  Google Scholar 

  22. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000;25:169–93. doi:10.1677/jme.0.0250169.

    Article  PubMed  CAS  Google Scholar 

  23. Lonergan P, Rizos D, Gutierrez-Adan A, Moreira PM, de la Pintado B, FJ BMP. Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol Reprod. 2003;69:1424–31. doi:10.1095/biolreprod.103.018168.

    Article  PubMed  CAS  Google Scholar 

  24. Trounson A, Anderiesz C, Jones G. Maturation of human oocytes in vitro and their developmental competence. Reproduction. 2001;121:51–75. doi:10.1530/rep.0.1210051.

    Article  PubMed  CAS  Google Scholar 

  25. Modina S, Luciano AM, Vassena R, Baraldi-Scesi L, Lauria A, Gandolfi F. Oocyte developmental competence after in vitro maturation depends on the persistence of cumulus-oocyte communications which are linked to the intracellular concentration of cAMP. Ital J Anat Embryol. 2001;106:241–8.

    PubMed  CAS  Google Scholar 

  26. DeSousa PA, Westhusin ME, Watson AJ. Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Mol Reprod Dev. 1998;49:119–30. doi:10.1002/(SICI)1098-2795(199802) 49:2<119::AID-MRD3>3.0.CO;2-S.

    Article  CAS  Google Scholar 

  27. Racedo S, Herrmann D, Wrenzycki C, Salamone D, Niemann H. Effects of follicle size and stage of maturation on mRNA expression in bovine in vitro matured oocytes. Reprod Fertil Dev. 2007;19:291. doi:10.1071/RDv19n1Ab352.

    Article  Google Scholar 

  28. Farin CE, Rodriguez KF, Alexander JE, Hockney JE, Herrick JR, Kennedy-Stoskopf S. The role of transcription in EGF- and FSH-mediated oocyte maturation in vitro. Anim Reprod Sci. 2007;98:97–112. doi:10.1016/j.anireprosci.2006.10.007.

    Article  PubMed  CAS  Google Scholar 

  29. Amaya E, Musci TJ, Kirschner MW. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell. 1991;66:257–70. doi:10.1016/0092-8674(91)90616-7.

    Article  PubMed  CAS  Google Scholar 

  30. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993;119:1079–91.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A., Gupta, N. & Gupta, S. Improvement of in vitro oocyte maturation with lectin supplementation and expression analysis of Cx43, GDF-9, FGF-4 and Fibronectin mRNA transcripts in Buffalo (Bubalus bubalis). J Assist Reprod Genet 26, 365–371 (2009). https://doi.org/10.1007/s10815-009-9314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-009-9314-x

Keywords

Navigation