Skip to main content
Log in

Microarray profiling of microRNAs expressed in testis tissues of developing primates

  • GENETICS
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

MicroRNAs (miRNAs) are small non-coding RNA molecules that have been identified as potent regulators of gene expression. Recent studies indicate that miRNAs are involved in mammalian spermatogenesis but the mechanism of regulation is largely unknown.

Methods

miRNA microarray was employed to compare miRNA expression profiles of testis tissues from immature rhesus monkey (Sample IR), mature rhesus monkey (Sample MR), and mature human (Sample MH). Real-time RT-PCR was uesd to confirm the changed miRNAs.

Results

Twenty-six miRNAs were shared by samples IR/MR and IR/MH with differential expression patterns greater than three-fold difference. PicTar and TargetScan prediction tools predicted a number of target mRNAs, and some of these target genes predicted by miRNAs have been shown to associate with spermatogenesis.

Conclusions

Our results indicate that miRNAs are extensively involved in spermatogenesis and provide additional information for further studies of spermatogenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Feng HL. Molecular biology of male infertility. Arch Androl. 2003;49:19–27. doi:10.1080/01485010290031556.

    Article  PubMed  CAS  Google Scholar 

  2. Hecht NB. Molecular mechanisms of male germ cell differentiation. Bioessays. 1998;20:555–61. doi:10.1002/(SICI) 1521-1878(199807) 20:7<555::AID-BIES6>3.0.CO;2-J.

    Article  PubMed  CAS  Google Scholar 

  3. Kleene KC. Patterns of translational regulation in the mammalian testis. Mol Reprod Dev. 1996;43:268–81. doi:10.1002/(SICI) 1098-2795(199602) 43:2<268::AID-MRD17>3.0.CO;2-#.

    Article  PubMed  CAS  Google Scholar 

  4. Ambros V. The functions of animal microRNAs. Nature. 2004;31:350–5. doi:10.1038/nature02871.

    Article  Google Scholar 

  5. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40. doi:10.1038/nature03120.

    Article  PubMed  CAS  Google Scholar 

  6. Yu Z, Raabe T, Hecht NB. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod. 2005;73:427–33. doi:10.1095/biolreprod.105.040998.

    Article  PubMed  CAS  Google Scholar 

  7. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNA from mouse. Curr Biol. 2002;12:735–9. doi:10.1016/S0960-9822(02) 00809-6.

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 2006;20:1732–43. doi:10.1101/gad.1425706.

    Article  PubMed  CAS  Google Scholar 

  9. Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007;311:592–602. doi:10.1016/j.ydbio.2007.09.009.

    Article  PubMed  CAS  Google Scholar 

  10. Braun RE. Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol. 1998;9:483–9. doi:10.1006/scdb.1998.0226.

    Article  PubMed  CAS  Google Scholar 

  11. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8. doi:10.1006/meth.2001.1262.

    Article  PubMed  CAS  Google Scholar 

  12. Peirson SN, Butler JN, Foster RG. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 2003;31:e73. doi:10.1093/nar/gng073.

    Article  PubMed  Google Scholar 

  13. Lall S, Grün D, Krek A, Chen K, Wang YL, Dewey CN, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol. 2006;16:460–71. doi:10.1016/j.cub.2006.01.050.

    Article  PubMed  CAS  Google Scholar 

  14. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98. doi:10.1016/S0092-8674(03) 01018-3.

    Article  PubMed  CAS  Google Scholar 

  15. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs stem–loop RT–PCR. Nucleic Acids Res. 2005;33:e179. doi:10.1093/nar/gni178.

    Article  PubMed  Google Scholar 

  16. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;16:222–34.

    Google Scholar 

  17. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;7209:58–63. doi:10.1038/nature07228.

    Article  Google Scholar 

  18. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;7209:64–71. doi:10.1038/nature07242.

    Article  Google Scholar 

  19. Scobey M, Bertera S, Somers J, Watkins S, Zeleznik A, Walker W. Delivery of a cyclic adenosine 3’, 5’-monophosphate response element-binding protein (CREB) mutant to seminiferous tubules results in impaired spermatogenesis. Endocrinology. 2001;142:948–54. doi:10.1210/en.142.2.948.

    Article  PubMed  CAS  Google Scholar 

  20. Granadino B, Arias-de-la-Fuente C, Pérez-Sánchez C, Párraga M, López-Fernández LA, del Mazo J, et al. Fhx (Foxj2) expression is activated during spermatogenesis and very early in embryonic development. Mech Dev. 2000;97:157–60. doi:10.1016/S0925-4773(00) 00410-X.

    Article  PubMed  CAS  Google Scholar 

  21. Chieffi P, Battista S, Barchi M, Di Agostino S, Pierantoni GM, Fedele M, et al. HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene. 2002;21:3644–50. doi:10.1038/sj.onc.1205501.

    Article  PubMed  CAS  Google Scholar 

  22. Godmann M, Kromberg I, Mayer J, Behr R. The mouse Krüppel-like Factor 4 (Klf4) gene: four functional polyadenylation sites which are used in a cell-specific manner as revealed by testicular transcript analysis and multiple processed pseudogenes. Gene. 2005;361:149–56. doi:10.1016/j.gene.2005.07.025.

    Article  PubMed  CAS  Google Scholar 

  23. Saito H, Takeda K, Yasumoto K, Ohtani H, Watanabe K, Takahashi K, et al. Germ cell-specific expression of microphthalmia-associated transcription factor mRNA in mouse testis. J Biochem. 2003;134:143–50. doi:10.1093/jb/mvg122.

    Article  PubMed  CAS  Google Scholar 

  24. Hayashi T, Kageyama Y, Ishizaka K, Xia G, Kihara K, Oshima H. Requirement of Notch 1 and its ligand jagged 2 expressions for spermatogenesis in rat and human testes. J Androl. 2001;22:999–1011.

    PubMed  CAS  Google Scholar 

  25. Connor F, Wright E, Denny P, Koopman P, Ashworth A. The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 1995;23:3365–72. doi:10.1093/nar/23.17.3365.

    Article  PubMed  CAS  Google Scholar 

  26. Wilkerson DC, Wolfe SA, Grimes SR. Sp1 and Sp3 activate the testis specific histone H1t promoter through the H1t/GC-box. J Cell Biochem. 2002;86:716–25. doi:10.1002/jcb.10265.

    Article  PubMed  CAS  Google Scholar 

  27. Cui Q, Yu Z, Purisima EO, Wang E. Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol. 2006;2:46–52. doi:10.1038/msb4100089.

    Article  PubMed  Google Scholar 

  28. Zhou Y, Ferguson J, Chang JT, Kluger Y. Inter- and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics. 2007;8:396–405. doi:10.1186/1471-2164-8-396.

    Article  PubMed  Google Scholar 

  29. Yamamoto CM, Hikim AP, Lue Y, Portugal AM, Guo TB, Hsu SY, et al. Impairment of spermatogenesis in transgenic mice with selective overexpression of Bcl-2 in the somatic cells of the testis. J Androl. 2001;22:981–91.

    PubMed  CAS  Google Scholar 

  30. Zheng S, Turner TT, Lysiak JJ. Caspase 2 activity contributes to the initial wave of germ cell apoptosis during the first round of spermatogenesis. Biol Reprod. 2006;74:1026–33. doi:10.1095/biolreprod.105.044610.

    Article  PubMed  CAS  Google Scholar 

  31. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4. doi:10.1126/science.1149460.

    Article  PubMed  CAS  Google Scholar 

  32. Nicchia GP, Frigeri A, Nico B, Ribatti D, Svelto M. Tissue distribution and membrane localization of aquaporin-9 water channel: evidence for sex-linked differences in liver. J Histochem Cytochem. 2001;49:1547–56.

    PubMed  CAS  Google Scholar 

  33. Domeniconi RF, Orsi AM, Justulin LA Jr, Beu CC, Felisbino SL. Aquaporin 9 (AQP9) Localization in the Adult Dog Testis Excurrent Ducts by Immunohistochemistry. Anat Rec. 2007;290:1519–25. doi:10.1002/ar.20611.

    Article  CAS  Google Scholar 

  34. Lopez P, Vidal F, Martin L, Lopez-Fernandez LA, Rual JF, Rosen BS, et al. Gene control in germinal differentiation: Rnf6, a transcription regulatory protein in the mouse sertoli cell. Mol Cell Biol. 2002;22:3488–96. doi:10.1128/MCB.22.10.3488-3496.2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Xuyang Liu (Laboratory of Ophthalmology, West China Hospital) for many helpful discussions during this work and Lei Chen (University of Oklahoma Health Sciences, Oklahoma City, OK) for his editorial assistance. This work was supported by National Program of High-tech Research and Development (863 Program) (grant no. 2008AA02Z102), National Nature Science Foundation of China (grant no. 90408025, 30500186 and 30770812) and Trans-Century Training Programme Foundation for the Talents by the Ministry of Education of China (grant no. NCET-07-0580). The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Ma.

Additional information

Capsule

This work, based on microRNA microarray assay and qRT-PCR assay, predicted genes associated with spermatogenesis by microRNA analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, N., Lu, Y., Sun, H. et al. Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet 26, 179–186 (2009). https://doi.org/10.1007/s10815-009-9305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-009-9305-y

Keywords

Navigation