Skip to main content
Log in

Effect of embryonic fibroblast cell co-culture on development of mouse embryos following exposure to visible light

  • ANIMAL EXPERIMENTATION
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To determine the effects of visible light on development of mouse embryos and the potential of fibroblast cells to overcome deleterious effects of visible light on mouse preimplantation stage embryos.

Methods

Two-cell mouse embryos were randomly allocated to un-exposed group (control) and exposed group receiving 1600 lx visible light for various time lengths. Both exposed and un-exposed embryos were co-cultured with either Mouse Embryonic Fibroblast (MEF) or Human Embryonic Fibroblast (HEF). Developmental rate of embryos at day 3 (morula), 4 (expanded blastocyst) and 5 (hatching or hatched blastocyst) was evaluated.

Results

Exposure of embryos to visible light for 30 min decreased developmental rate significantly (P < 0.01). Developmental rate of exposed embryos co-cultured with MEF (58%; p < 0.05 both at day 4 and 5) and HEF (67%; P < 0.01 both at day 4 and 5) was higher than control.

Conclusions

Visible light adversely affects embryo development in a time-dependent manner. Feeder cells may enhance embryo development particularly when suboptimal conditions are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Desai N, Abdelhafez F, Bedaiwy MA, Goldfarb J. Live births in poor prognosis IVF patients using a novel non-contact human endometrial co-culture system. Reprod Biomed Online 2008;16(6):869–74.

    PubMed  Google Scholar 

  2. Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod 1998;13(4):964–70. doi:10.1093/humrep/13.4.964.

    Article  PubMed  CAS  Google Scholar 

  3. Lane M, Baltz JM, Bavister BD. Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev Biol 1999;208(1):244–52. doi:10.1006/dbio.1999.9198.

    Article  PubMed  CAS  Google Scholar 

  4. Bavister BD. Interactions between embryos and the culture milieu. Theriogenology 2000;53(2):619–26. doi:10.1016/S0093-691X(99)00262-9.

    Article  PubMed  CAS  Google Scholar 

  5. Jiang JX, Choi RC, Siow NL, Lee HH, Wan DC, Tsim KW. Muscle induces neuronal expression of acetylcholinesterase in neuron-muscle co-culture: transcriptional regulation mediated by cAMP-dependent signaling. J Biol Chem 2003;278(46):45435–44. doi:10.1074/jbc.M306320200.

    Article  PubMed  CAS  Google Scholar 

  6. Parshad R, Taylor WG, Sanford KK, Camalier RF, Gantt R, Tarone RE. Fluorescent light-induced chromosome damage in human IMR-90 fibroblasts. Role of hydrogen peroxide and related free radicals. Mutat Res 1980;73(1):115–24. doi:10.1016/0027-5107(80)90140-2.

    PubMed  CAS  Google Scholar 

  7. Hegele-Hartung C, Schumacher A, Fischer B. Effects of visible light and room temperature on the ultrastructure of preimplantation rabbit embryos: a time course study. Anat Embryol (Berl) 1991;183(6):559–71. doi:10.1007/BF00187905.

    CAS  Google Scholar 

  8. TTakahashi M, Saka N, Takahashi H, Kanai Y, Schultz RM, Okano A. Assessment of DNA damage in individual hamster embryos by comet assay. Mol Reprod Dev. 1999;54(1):1–7. doi:10.1002/(SICI)1098-2795(199909)54:1<1::AID-MRD1>3.0.CO;2-0.

    Article  PubMed  CAS  Google Scholar 

  9. Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci USA 2007;104(36):14289–93. doi:10.1073/pnas.0706687104.

    Article  PubMed  CAS  Google Scholar 

  10. Hamdoun A, Epel D. Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci USA 2007;104(6):1745–50. doi:10.1073/pnas.0610108104.

    Article  PubMed  CAS  Google Scholar 

  11. Gorgidze LA, Oshemkova SA, Vorobjev IA. Blue light inhibits mitosis in tissue culture cells. Biosci Rep 1998;18(4):215–24. doi:10.1023/A:1020104914726.

    Article  PubMed  CAS  Google Scholar 

  12. Garcia-Garcia RM, Dominguez V, Gonzalez-Bulnes A, Veiga-Lopez A, Cocero MJ. Effect of embryo developmental stage and culture conditions on number and quality of ovine in vitro produced blastocysts. Zygote 2006;14(3):181–7. doi:10.1017/S0967199406003728.

    Article  PubMed  CAS  Google Scholar 

  13. Barlow P, Puissant F, Van der Zwalmen P, Vandromme J, Trigaux P, Leroy F. In vitro fertilization, development, and implantation after exposure of mature mouse oocytes to visible light. Mol Reprod Dev 1992;33(3):297–302. doi:10.1002/mrd.1080330310.

    Article  PubMed  CAS  Google Scholar 

  14. Sangwan VS, Vemuganti GK, Singh S, Balasubramanian D. Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep 2003;23(4):169–74. doi:10.1023/B:BIRE.0000007690.43273.73.

    Article  PubMed  CAS  Google Scholar 

  15. d’Estaing SG, Lornage J, Hadj S, Boulieu D, Salle B, Guerin JF. Comparison of two blastocyst culture systems: coculture on Vero cells and sequential media. Fertil Steril 2001;76(5):1032–5. doi:10.1016/S0015-0282(01)02737-6.

    Article  PubMed  CAS  Google Scholar 

  16. Arechiga CF, Hansen PJ. Response of preimplantation murine embryos to heat shock as modified by developmental stage and glutathione status. In Vitro Cell Dev Biol Anim 1998;34(8):655–9. doi:10.1007/s11626-996-0016-8.

    Article  PubMed  CAS  Google Scholar 

  17. Langley MT, Marek DM, Gardner DK, Doody KM, Doody KJ. Extended embryo culture in human assisted reproduction treatments. Hum Reprod 2001;16(5):902–8. doi:10.1093/humrep/16.5.902.

    Article  PubMed  CAS  Google Scholar 

  18. Nematollahi N, Valojerdi MR. Effect of Vero cell coculture on the development of frozen-thawed two-cell mouse embryos. J Assist Reprod Genet 1999;16(7):380–4. doi:10.1023/A:1020598031275.

    Article  PubMed  CAS  Google Scholar 

  19. Taniguchi F, Harada T, Nara M, Deura I, Mitsunari M, Terakawa N. Coculture with a human granulosa cell line enhanced the development of murine preimplantation embryos via SCF/c-kit system. J Assist Reprod Genet 2004;21(6):223–8. doi:10.1023/B:JARG.0000040238.61586.86.

    Article  PubMed  Google Scholar 

  20. Rizos D, Ward F, Boland MP, Lonergan P. Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification. Theriogenology 2001;56(1):1–16. doi:10.1016/S0093-691X(01)00538-6.

    Article  PubMed  CAS  Google Scholar 

  21. Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod 1997;56(5):1088–96. doi:10.1095/biolreprod56.5.1088.

    Article  PubMed  CAS  Google Scholar 

  22. Goldberg JM, Khalifa EA, Friedman CI, Kim MH. Improvement of in vitro fertilization and early embryo development in mice by coculture with human fallopian tube epithelium. Am J Obstet Gynecol 1991;165(6 Pt 1):1802–5.

    PubMed  CAS  Google Scholar 

  23. Khatir H, Anouassi A, Tibary A. Production of dromedary (Camelus dromedarius) embryos by IVM and IVF and co-culture with oviductal or granulosa cells. Theriogenology 2004;62(7):1175–85. doi:10.1016/j.theriogenology.2004.01.016.

    Article  PubMed  Google Scholar 

  24. Seta M. Embryo transfer after autologous endometrial coculture improves pregnancy rates. Hum Cell 2001;14(2):135–40.

    PubMed  CAS  Google Scholar 

  25. Kim YB, Ahn SH, Chang DY, Chung KN, Koh JW. Vero cell co-culture counteracts the detrimental effects of hydrosalpinx fluid on the development of mouse embryos in vitro. J Korean Med Sci 2002;17(2):217–9.

    PubMed  Google Scholar 

  26. Noh JH, Chung KN, Kim YB. The effect of Vero cell coculture on the development of mouse embryos exposed to monoclonal antibodies specific for mammalian heat shock protein 60. J Korean Med Sci 2006;21(2):304–8.

    Article  PubMed  CAS  Google Scholar 

  27. Azadbakht M, Valojerdi MR, Mowla SJ. Development of mouse embryos co-cultured with polarized or non-polarized uterine epithelial cells using sequential culture media. Anim Reprod Sci 2007;100(1–2):141–57. doi:10.1016/j.anireprosci.2006.06.012.

    Article  PubMed  CAS  Google Scholar 

  28. Pelz O, Wu M, Nikolova T, Kamprad M, Ackermann M, Egger D, et al. Duplex polymerase chain reaction quantification of human cells in a murine background. Stem Cells 2005;23(6):828–33. doi:10.1634/stemcells.2004-0206.

    Article  PubMed  CAS  Google Scholar 

  29. Rabinovitch A, Russell T, Mintz DH. Factors from fibroblasts promote pancreatic islet B cell survival in tissue culture. Diabetes 1979;28(12):1108–13. doi:10.2337/diabetes.28.12.1108.

    Article  PubMed  CAS  Google Scholar 

  30. Parshad R, Sanford KK, Jones GM, Tarone RE, Hoffman HA, Grier AH. Susceptibility to fluorescent light-induced chromatid breaks associated with DNA repair deficiency and malignant transformation in culture. Cancer Res 1980;40(12):4415–9.

    PubMed  CAS  Google Scholar 

  31. Jiang F, Hao F, Wei H, Xu D. Effects of visible light on cultured bovine trabecular cells. J Huazhong Univ Sci Technolog Med Sci 2004;24(2):178–80. , 84.

    PubMed  Google Scholar 

  32. Johnson JE, Higdon Iii HL, Boone WR. Effect of human granulosa cell co-culture using standard culture media on the maturation and fertilization potential of immature human oocytes. Fertil Steril. 2007.

  33. Rubio C, Simon C, Mercader A, Garcia-Velasco J, Remohi J, Pellicer A. Clinical experience employing co-culture of human embryos with autologous human endometrial epithelial cells. Hum Reprod 2000;15(Suppl 6):31–8.

    PubMed  Google Scholar 

  34. Qian Y, Shi WQ, Ding JT, Liu JY, Sha JH, Fan BQ. Effects of type and state of co-culture cells on in-vitro development of porcine oocytes matured and fertilized in vitro. J Assist Reprod Genet 2005;22(6):233–8. doi:10.1007/s10815-005-5145-6.

    Article  PubMed  Google Scholar 

  35. Katska-Ksiazkiewicz L, Opiela J, Rynska B. Effects of oocyte quality, semen donor and embryo co-culture system on the efficiency of blastocyst production in goats. Theriogenology 2007;68(5):736–44. doi:10.1016/j.theriogenology.2007.06.016.

    Article  PubMed  CAS  Google Scholar 

  36. Urman B, Balaban B. Is there still a place for co-cultures in the era of sequential media? Reprod Biomed Online 2005;10(4):492–6.

    Article  PubMed  Google Scholar 

  37. Hatoya S, Sugiyama Y, Torii R, Wijewardana V, Kumagai D, Sugiura K, et al. Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC of canine oocytes. Theriogenology 2006;66(5):1083–90. doi:10.1016/j.theriogenology.2005.12.015.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang NY, Hu YL, Sun HX, Wang B, Xu ZP, Chen H. [Establishment of autologous endometrial coculture and sequential system for human early embryo culture]. Zhonghua Nan Ke Xue 2006;12(11):997–9. , 1003.

    PubMed  Google Scholar 

  39. Mercader A, Garcia-Velasco JA, Escudero E, Remohi J, Pellicer A, Simon C. Clinical experience and perinatal outcome of blastocyst transfer after coculture of human embryos with human endometrial epithelial cells: a 5-year follow-up study. Fertil Steril 2003;80(5):1162–8. doi:10.1016/S0015-0282(03)01178-6.

    Article  PubMed  Google Scholar 

  40. Lee YL, Xu JS, Chan ST, Ho PC, Yeung WS. Vero cells, but not oviductal cells, increase the hatching frequency and total cell count of mouse blastocysts partly by changing energy substrate concentrations in culture medium. J Assist Reprod Genet 2001;18(10):566–74. doi:10.1023/A:1011910125079.

    Article  PubMed  CAS  Google Scholar 

  41. Baghaban Eslami Nejad MR, Rezazadeh Valojerdi M, Kazemi Ashtiani S. A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development. J Exp Clin Assist Reprod 2005;2(1):7. doi:10.1186/1743-1050-2-7.

    Article  PubMed  CAS  Google Scholar 

  42. Xu KP, Yadav BR, Rorie RW, Plante L, Betteridge KJ, King WA. Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and co-cultured with bovine oviducal epithelial cells. J Reprod Fertil 1992;94(1):33–43. doi:10.1530/jrf.0.0940033.

    Article  PubMed  CAS  Google Scholar 

  43. Wetzels AM, Bastiaans BA, Hendriks JC, Goverde HJ, Punt-van der Zalm AP, Verbeet JG, et al. The effects of co-culture with human fibroblasts on human embryo development in vitro and implantation. Hum Reprod 1998;13(5):1325–30. doi:10.1093/humrep/13.5.1325.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Mohammad-ali Kiani and Saeed Rajabalian are acknowledged for their technical assistance. This work was financially supported by the grant No. 81-09 from Kerman University of Medical Sciences to S.N. Nematollahi-mahani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Noureddin Nematollahi-mahani.

Additional information

Capsule

Mouse embryos were exposed to visible light and co-cultured with feeder layers. Our co-culture systems increased developmental rate especially when suboptimal conditions were present.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nematollahi-mahani, S.N., Pahang, H., Moshkdanian, G. et al. Effect of embryonic fibroblast cell co-culture on development of mouse embryos following exposure to visible light. J Assist Reprod Genet 26, 129–135 (2009). https://doi.org/10.1007/s10815-008-9290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-008-9290-6

Keywords

Navigation