Molecular analysis of the β-catenin gene in patients with the Mayer-Rokitansky-Küster-Hauser syndrome

  • Juliana B. Drummond
  • Camila F. Rezende
  • Fabio C. Peixoto
  • Joana S. Carvalho
  • Fernando M. Reis
  • Luiz De Marco



To study the β-catenin gene in a group of Mayer-Rokitansky-Küster-Hauser patients.


Twelve patients with the Mayer-Rokitansky-Küster-Hauser syndrome were included in this study. DNA was extracted from peripheral blood and the region codifying β-catenin GSK-3β phosphorylation sites on exon 3 was amplified. PCR products were purified and directly sequenced.


No mutations were found in the GSK-3β phosphorylation sites on exon 3 of β-catenin gene in this group of patients with the MRKH syndrome.


β-catenin gene mutations are an unlikely cause of the MRKH syndrome.


Mayer-Rokitansky-Küster-Hauser syndrome β-catenin molecular analysis Müllerian ducts anti-Müllerian hormone 



This work was partially supported by FAPEMIG and CNPq (#473169/2004-5), Brasil.


  1. 1.
    Oppelt P, Renner SP, Kellerman A, Brucker S, Hauser GA, Ludwig KS, et al. Clinical aspects of Mayer-Rokitansky-Kuester-Hauser syndrome: recommendations for clinical diagnosis and staging. Hum Reprod 2006;21:792–7. doi: 10.1093/humrep/dei381.PubMedCrossRefGoogle Scholar
  2. 2.
    Griffin JE, Edwards C, Madden JD, Harrod MJ, Wilson JD. Congenital absence of the vagina. The Mayer-Rokitansky-Küster-Hauser syndrome. Ann Intern Med 1976;85:224–36.PubMedGoogle Scholar
  3. 3.
    Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet. 2003;4:969–80. doi: 10.1038/nrg1225.PubMedCrossRefGoogle Scholar
  4. 4.
    Van Lingen BL, Reindollar RH, Davis AG, Gray MR. Further evidence that the WT1 gene does not have a role in the development of the derivatives of the mullerian duct. Am J Obstet Gynecol. 1998;179:597–603. doi: 10.1016/S0002-9378(98)70051-1.PubMedCrossRefGoogle Scholar
  5. 5.
    Van Lingen BL, Eccles N, Reindollar RH, Gray MR. Molecular Genetic Analysis of the PAX2 gene in patients with congenital absence of the uterus and vagina. Fertil Steril. 1998;70:S42.Google Scholar
  6. 6.
    Cheroki C, Krepischi-Santos AC, Rosenberg C, Jehee FS, Mingroni-Netto RC, Pavanello Filho I, et al. Report of a del22q11 in a patient with Mayer-Rokitansky-Kuster-Hauser (MRKH) anomaly and exclusion of WNT4, RAR-gamma and RXR-alpha as major genes determining MRKH anomaly in a study of 25 affected women. Am J Med Genet A. 2006;140:1339–42. doi: 10.1002/ajmg.a.31254.PubMedGoogle Scholar
  7. 7.
    Timmreck L, Pan H, Reindollar R, Gray MR. WNT7A mutations in patients with Mullerian duct abnormalities. J Pediatr Adolesc Gynecol. 2003;16:217–22. doi: 10.1016/S1083-3188(03)00124-4.PubMedCrossRefGoogle Scholar
  8. 8.
    Burel A, Mouchel T, Odent S, Tiker F, Knebelmann B, Pellerin I, Guerrier D. Role of HOXA7 to HOXA 13 and PBX1 genes in various forms of MRKH syndrome (congenital absence of uterus and vagina). J Negat Results Biomed. 2006;5:4. doi: 10.1186/1477-5751-5-4.PubMedCrossRefGoogle Scholar
  9. 9.
    Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with Mullerian-duct regression in a 46, XX woman. N Engl J Med. 2004;351:792–8. doi: 10.1056/NEJMoa040533.PubMedCrossRefGoogle Scholar
  10. 10.
    Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer-Rokitansky-Kuster-Hauser syndrome: a case report. Hum Reprod. 2007;22:224–9. doi: 10.1093/humrep/del360.PubMedCrossRefGoogle Scholar
  11. 11.
    Philibert P, Biason-Lauber A, Rouzier R. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and müllerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab. 2008;93:895–900. doi: 10.1210/jc.2007-2023.PubMedCrossRefGoogle Scholar
  12. 12.
    Clement-Ziza M, Khen N, Gonzales J. Exclusion of WNT4 as a major gene in Rokitansky-Kuster-Hauser anomaly. Am J Med Genet A. 2005;137:98–9. doi: 10.1002/ajmg.a.30833.PubMedGoogle Scholar
  13. 13.
    Drummond JB, Reis FM, Boson WL, Silveira LF, Bicalho MA, De Marco L. Molecular analysis of the WNT4 gene in 6 patients with Mayer-Rokitansky-Küster-Hauser syndrome. Fertil Steril. doi:10.1016/j.fertnstert.2007.07.1319Google Scholar
  14. 14.
    Zenteno J, Carranza-Lira S, Kofman-Alfaro S. Molecular analysis of the anti-Mullerian hormone, the anti-Mullerian hormone receptor, and galactose-1-phosphate uridyl transferase genes in patients with the Mayer-Rokitansky-Kuster-Hauser syndrome. Arch Gynecol Obstet. 2004;269:270–3. doi: 10.1007/s00404-002-0456-7.PubMedCrossRefGoogle Scholar
  15. 15.
    Oppelt P, Strissel PL, Kellermann A, Seeber S, Humeny A, Beckmann MW, et al. DNA sequence variations of the entire anti-Mullerian hormone (AMH) gene promoter and AMH protein expression in patients with the Mayer-Rokitansky-Kuster-Hauser syndrome. Hum Reprod. 2005;20:149–57. doi: 10.1093/humrep/deh547.PubMedCrossRefGoogle Scholar
  16. 16.
    Resendes BL, Sohn SH, Stelling JR, Tineo R, Davis AJ, Gray MR, et al. Role of anti-Mullerian hormone in congenital absence of the uterus and -vagina. Am J Med Genet. 2001;98:129–36. doi: 10.1002/1096-8628(20010115)98:2<129::AID-AJMG1021>3.0.CO;2-3.PubMedCrossRefGoogle Scholar
  17. 17.
    Resnik E. β-catenin—one player, two games. Nat Genet. 1997;16:9–11. doi: 10.1038/ng0597-9.PubMedCrossRefGoogle Scholar
  18. 18.
    Massagué J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 2000;1:169–78. doi: 10.1038/35043051.PubMedCrossRefGoogle Scholar
  19. 19.
    Josso N, Clemente N. Transduction pathway of anti-Mullerian hormone, a sex-specific member of the TGF-beta family. Trends Endocrinol Metab. 2003;14:91–7. doi: 10.1016/S1043-2760(03)00005-5.PubMedCrossRefGoogle Scholar
  20. 20.
    Allard S, Adin P, Gouédard L, di Clemente N, Josso N, Orgebin-Crist MC, et al. Molecular mechanisms of hormone-mediated duct regression: involvement of beta-catenin. Development. 2000;127:3349–60.PubMedGoogle Scholar
  21. 21.
    Hossain A, Saunders GF. Synergistic cooperation between the β-catenin signaling pathway and steroidogenic factor 1 in the activation of the mullerian inhibiting substance type II receptor. J Biol Chem. 2003;278:26511–6. doi: 10.1074/jbc.M300804200.PubMedCrossRefGoogle Scholar
  22. 22.
    Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.PubMedGoogle Scholar
  23. 23.
    Kikuchi A. Tumor formation by genetic mutations in the components of Wnt signaling pathway. Biochem Biophys Res Commun. 2000;2:243–8. doi: 10.1006/bbrc.1999.1860.CrossRefGoogle Scholar
  24. 24.
    Zhan Y, Fujino A, Maclaughlin D, Manganaro TF, Szotek PP, Arango NA, et al. Mullerian inhibiting sustance regulates its receptors/SMAD signaling and causes mesenchymal transition of the coelomic epithelial cells early in Mullerian duct regression. Development. 2006;133:2359–69. doi: 10.1242/dev.02383.PubMedCrossRefGoogle Scholar
  25. 25.
    Parr B, McMahon AP. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature. 1998;395:707–10. doi: 10.1038/27221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Juliana B. Drummond
    • 1
  • Camila F. Rezende
    • 2
  • Fabio C. Peixoto
    • 2
  • Joana S. Carvalho
    • 1
  • Fernando M. Reis
    • 2
  • Luiz De Marco
    • 1
  1. 1.Department of PharmacologyFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Department of Gynecology and ObstetricsFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations