Skip to main content

Advertisement

Log in

Human oocyte and ovarian tissue cryopreservation and its application

  • Assisted Reproduction
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To review the recent progress in human oocyte and ovarian tissue cryopreservation, and in the application of these two technologies for preserving female fertility of patients who are undergoing cancer treatment.

Design

The literature on human oocyte and ovarian tissue freezing was searched with PubMed. The scientific background, current developments and potential future applications of these two methods were reviewed.

Results

Chemotherapy and/or radiotherapy can induce premature ovarian failure in most of female cancer patients. Consequently, there has been a greater need for options to preserve the reproductive potential of these individuals. However, options are somewhat limited currently, particularly following aggressive chemotherapy and/or radiotherapy treatment protocols. In recent years, there have been considerable advances in the cryopreservation of human oocytes and ovarian tissue. For women facing upcoming cancer therapies, cryopreservation of ovarian tissue and oocytes is a technology that holds promise for banking reproductive potential for the future. Recent laboratory modifications have resulted in improved oocyte survival, oocyte fertilization, and pregnancy rates from frozen–thawed oocytes in IVF. This suggests potential for clinical application.

Conclusions

In the case of patients who are facing infertility due to cancer therapy, oocyte cryopreservation may be one of the few options available. Ovarian tissue cryopreservation can only be recommended as an experimental protocol in carefully selected patients. In ovarian tissue transplantation, more research is needed in order to enhance the revascularization process with the goal of reducing the follicular loss that takes place after tissue grafting. These technologies are still investigational, although tremendous progress has been made. The availability of such treatment will potentially lead to its demand not only from patients with cancer but also from healthy women who chose to postpone childbearing until later in life and therefore wish to retain their fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ries LAG, Percy CL, Bunin GR. Introduction. In: Ries LAG, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR, editors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. Bethesda, MD: National Cancer Institute; 1999. p. 1–15.

    Google Scholar 

  2. Anderson-Reitz L, Mechling BE, Hertz SL. High-dose chemotherapy for breast cancer. JAMA 1999;282:1701–3.

    Article  Google Scholar 

  3. Barlow DH. Premature ovarian failure. Bailliere’s Clin Obstet Gynecol. 1996;10:369–84.

    Google Scholar 

  4. Chatterjee R, Goldstone AH. Gonadal damage and the effects of fertility in adult patients with haematological malignancy undergoing stem cell transplantation. Bone Marrow Transplant. 1996;17:5–11.

    PubMed  CAS  Google Scholar 

  5. Rauck AM, Grouas AC. Bone marrow transplantation in adolescents. Adolesc Med. 1999;10:445–9.

    PubMed  CAS  Google Scholar 

  6. Thomas ED. Bone marrow transplantation: a review. Semin Hematol. 1999;36:95–103.

    PubMed  CAS  Google Scholar 

  7. Baird DT, Webb R, Campbell BK, Harkness LM, Gosden RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196 C. Endocrinology 1999;140:462–71.

    Article  PubMed  CAS  Google Scholar 

  8. Salle B, Demirci B, Franck M, Berthollet C, Lornage J. Long-term follow-up of cryopreserved hemi-ovary autografts in ewes: pregnancies, births, and histologic assessment. Fertil Steril. 2003;80:172–7.

    Article  PubMed  Google Scholar 

  9. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 2004;364:1405–10.

    Article  PubMed  CAS  Google Scholar 

  10. Robertson JA. Ethical issues in ovarian transplantation and donation. Fertil Steril. 2000;73:443–6.

    Article  PubMed  CAS  Google Scholar 

  11. American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. Fertil Steril. 2005;83:1622–8.

    Article  Google Scholar 

  12. Howell SJ, Shalet S. Gonadal damage from chemotherapy and radiotherapy. Endocrinol Metab Clin. 1998;27:927–43.

    Article  CAS  Google Scholar 

  13. Hawkins MM. Pregnancy outcome and offspring after childhood cancer. BMJ 1994;309:1034.

    PubMed  CAS  Google Scholar 

  14. Sanders JE, Hawley J, Levy W, Gooley T, Buckner CD, Deeg HJ, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood 1996;87:3045–52.

    PubMed  CAS  Google Scholar 

  15. Gougeon A. Regulations of ovarian follicular development in primates: facts and hypotheses. Endocrine Rev. 1996;17:121–54.

    Article  CAS  Google Scholar 

  16. Ataya K, Moghissi K. Chemotherapy-induced premature ovarian failure: mechanism and prevention. Steroids 1989;54:607–26.

    Article  PubMed  CAS  Google Scholar 

  17. Meirow D, Epstein M, Lewis H, Nugent D, Gosden RG. Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations. Hum Reprod. 2001;16:632–7.

    Article  PubMed  CAS  Google Scholar 

  18. Ataya KM, Pyden E, Sacco A. Effect of “activated” cyclophosphamide on mouse oocyte in vitro fertilization and cleavage. Reprod Toxicol. 1988;2:105–9.

    Article  PubMed  CAS  Google Scholar 

  19. Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986;2:884–6.

    Article  Google Scholar 

  20. Stachecki JJ, Cohen J. An overview of oocyte cryopreservation. Reprod Biomed Online. 2004;9:152–63.

    PubMed  Google Scholar 

  21. Bernard A, Fuller BJ. Cryopreservation of human oocytes: a review of current problems and perspectives. Hum Reprod Updat. 1996;2:193–207.

    Article  CAS  Google Scholar 

  22. Oktay K, Cil AP, Bang H. Efficiency of oocyte cryopreservation: a meta-analysis. Fertil Steril. 2006;86:70–80.

    Article  PubMed  Google Scholar 

  23. Al-Hasani S, Diedrich K, Van der Ven H, Reinecke A, Hartje M, Krebs D. Cryopreservation of human oocytes. Hum Reprod. 1987;2:695–700.

    PubMed  CAS  Google Scholar 

  24. Van Uem JFHM, Siebzehnrubl ER, Schuh B, Koch R, Trotnow S, Lang N. Birth after cryopreservation on unfertilized oocytes. Lancet 1987;1:752–3.

    PubMed  Google Scholar 

  25. Vaita G, Holm P, Kuwayama M, Greve T, Callesen H. A new way to avoid cryoinjuries of mammalian ova and embryos: the OPS vitrification. Mol Reprod Dev. 1998;51:53–8.

    Article  Google Scholar 

  26. Matson PL, Graefling J, Junk SM, Yovich JL, Edirisinghe WR. Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in-vitro fertilization programme. Hum Reprod. 1997;12:1550–3.

    Article  PubMed  CAS  Google Scholar 

  27. Tucker M, Wright G, Morton P, Shanguo L, Massey J, Kort H. Preliminary experience with human oocyte cryopreservation using 1,2-propanediol and sucrose. Hum Reprod. 1996;7:1513–5.

    Google Scholar 

  28. Gook DA, Schiewe MC, Osborn SM, Asch R, Jansen RPS, Johnson WIH. Intracytoplasmic sperm injection and embryo development of human cryopreserved oocytes using 1,2-propanediol. Hum Reprod. 1995;10:2637–41.

    PubMed  CAS  Google Scholar 

  29. Kazem R, Thompson LA, Laing MA, Hamilton MPR, Templeton A. Cryopreservation of human oocytes and fertilization by two techniques: in vitro fertilization and Intra cytoplasmic sperm injection. Hum Reprod. 1995;10:2650–4.

    PubMed  CAS  Google Scholar 

  30. Barritt J, Luna M, Duke M, Grunfeld L, Mukherjee T, Sandler B, et al. Report of four donor-recipient oocyte cryopreservation cycles resulting in high pregnancy and implantation rates. Fertil Steril. 2007;87:S189.

    Article  Google Scholar 

  31. Boldt J, Tidswell N, Sayers A, Kilani R, Cline D. Human oocyte cryopreservation: 5-year experience with a sodium-depleted slow freezing method. Reprod Biomed Online. 2006;13:96–100.

    PubMed  CAS  Google Scholar 

  32. Cobo A, Rubio C, Gerli S, Ruiz A, Pellicer A, Remohi J. Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil Steril. 2001;75:354–60.

    Article  PubMed  CAS  Google Scholar 

  33. Coticchio G, Distratis V, Bianchi V, Bonu A, Sereni E, Borini A. Fertilization and early developmental ability of cryopreserved human oocytes is not affected compared to sibling fresh oocytes. Fertil Steril. 2007;88:S340.

    Article  Google Scholar 

  34. Elizur SE, Holzer HEG, Demirtas E, Chian RC, Son WY, Tan SL. In-vitro maturation (IVM) and vitrification of oocytes retrieved at the luteal phase in cancer patients facing urgent gonadotoxic treatment. Fertil Steril. 2007;88:S340.

    Article  Google Scholar 

  35. Huang JYJ, Tulandi T, Holzer H, Tan SL, Chian RC. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril. 2008;89(3):567–72, Corrected proof on line (June 2007).

    Article  PubMed  Google Scholar 

  36. Yang D, Brown SE, Nguyen K, Reddy V, Brubaker C, Winslow KL. Live birth after the transfer of human embryos developed from cryopreserved oocytes harvested before cancer treatment. Fertil Steril. 2007;87:1469.

    Article  PubMed  Google Scholar 

  37. Paynter SJ, Cooper A, Gregory L, Fuller BJ, Shaw RW. Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. Hum Reprod. 1999;14:2338–42.

    Article  PubMed  CAS  Google Scholar 

  38. Paynter SJ, Fuller BJ, Shaw RW. Temperature of dependence of mouse oocyte membrane permeability in the presence of the cryoprotectant. Cryobiology. 1997;34:122–30.

    Article  PubMed  CAS  Google Scholar 

  39. Niemann H, Lucas-Hahn A, Stoffregenb C. Cryopreservation of bovine oocytes and embryos following microsurgical operations. Mol Reprod Develop. 1993;36:232–5.

    Article  CAS  Google Scholar 

  40. Martino A, Songasasen N, Leibo SO. Development into blastocyst of bovine ooctes cryopreserved by ultrarapid cooling of very small sample. Cryobiology 1995;32:565–6.

    Google Scholar 

  41. Albertini DF. The cytoskeleton as a target for chilling injury in mammalian cumulus oocytes complexes. Cryobiology 1995;32:551–2.

    Google Scholar 

  42. Overstrom EW, Paqui-Platls D, Toner M, Cravacho EG. Cryoprotectant and thermal effects on cryoskeletal organization and IVF rate of mouse oocytes. Biol Reprod. 1990;42:175.

    Google Scholar 

  43. Gleinster PH, Wood MJ, Kirby C, Whittingham DG. Incidence of chromosome anomalies in first-cleavage mouse embryos obtained from frozen–thawed oocyte fertilized in vitro. Gam Res. 1987;16:205–16.

    Article  Google Scholar 

  44. Shaw JM, Kola I, MacFarlane DR, Trounson AO. An association between chromosomal abnormalities in rapidly frozen 2-cell mouse embryos and the ice-forming properties of the cryoprotective solution. J Reprod Fertil. 1991;91:9–18.

    PubMed  CAS  Google Scholar 

  45. Shaw JM, Oranratnachar A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 2000;53:59–72.

    Article  PubMed  CAS  Google Scholar 

  46. Rall W, Fahy G. Ice-free cryopreservation of mouse embryos at -196°C by vitrification. Nature 1985;313:573–5.

    Article  PubMed  CAS  Google Scholar 

  47. Pickering SJ, Johnson MH. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod. 1987;2:207–16.

    PubMed  CAS  Google Scholar 

  48. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocytes. Fertil Steril. 1990;54:102–8.

    PubMed  CAS  Google Scholar 

  49. Arav A, Zeron Y. A new device and method for vitrification increases the cooling rate and allows successful vitrification of bovine oocytes. Theriogenology 2000;53:248.

    Google Scholar 

  50. Ito K, Hirabayashi M, Ueda M, Sekimoto A, Nagao Y, Kato M, et al. Effect of linoleic acid-albumin of the development potential of embryos produced by nuclear transfer into frozen–thawed bovine blastocysts. Theriogenology 2000;53:258.

    Google Scholar 

  51. Coticchio G, De Santis L, Rossi G, Borini A, et al. Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configurations after slow-cooling cryopreservation. Hum Reprod. 2006;21:1771–6.

    Article  PubMed  CAS  Google Scholar 

  52. Ayos AA, Takahashi Y, Hishimura M, Kanagawa H. Quick freezing of unfertilized mouse oocytes using ethylene glycol with sucrose or trehalose. J Reprod Fertil. 1994;100:123–9.

    Article  Google Scholar 

  53. Zeron Y, Arav A, Crowe JH. The effect of butylated Hydroxytoluene (BHT) in the lipid phase transition in immature bovine oocytes. Theriogenology 1997;47:362.

    Article  Google Scholar 

  54. Huang JY, Chen HY, Tan SL, Chian RC. Effect of choline-supplemented sodium-depleted slow freezing versus vitrification on mouse oocyte meiotic spindles and chromosome abnormalities. Fertil Steril. 2007;88:1093–100.

    Article  PubMed  Google Scholar 

  55. Lane M, Schoolcraft WB, Gardner DK. Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril. 1999;72:1073–8.

    Article  PubMed  CAS  Google Scholar 

  56. Hong SW, Chung HM, Lim JM, Ko JJ, Yoon TK, Yee B, et al. Improved human oocytes development after vitrification: a comparison of thawing methods. Fertil Steril. 1999;72:142–6.

    Article  PubMed  CAS  Google Scholar 

  57. Carrol J, Wood DM, Whittingham DG. Normal development of frozen–thawed mouse oocytes: protective action of certain macromolecules. Bio Reprod. 1993;48:606–12.

    Article  Google Scholar 

  58. Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 2000;53:59–72.

    Article  PubMed  CAS  Google Scholar 

  59. Baka SG, Toth TL, Veeck IL Jr, Jones HW, Muasher SJ, Lanzendorf SE. Evaluation of the spindle apparatus of in-vitro matured human oocytes following cryopreservation. Hum Reprod. 1995;10:1816–20.

    PubMed  CAS  Google Scholar 

  60. La Sala GB, Nicoli A, Villani MT, Pescarini M, Gallinelli A, Blickstein I. Outcome of 518 salvage oocytes–cryopreservation cycles performed as a routine procedure in an in vitro fertilization program. Fertil Steril. 2006;86:1423–7.

    Article  PubMed  Google Scholar 

  61. Boiso I, Marti M, Santalo J, Ponsa M, Barri PN, Veiga A. A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum Reprod. 2002;17:1885–91.

    Article  PubMed  Google Scholar 

  62. Mandelbaum J, Belaisch-Allart J, Juncda AM, Antonine JM, Plachot M, et al. Cryopreservation in human assisted reproduction is now routine for embryos but remains a research procedure for oocytes. Hum Reprod. 1998;13:161–74.

    Article  PubMed  Google Scholar 

  63. Fuku E, Xia L, Downey BR. Ultrastructural changes in bovine oocytes cryopreserved by vitrification. Cryobiology 1995;32:139–56.

    Article  PubMed  CAS  Google Scholar 

  64. Oktay K, Kan MT, Rosenwaks Z. Recent progress in oocyte and ovarian tissue cryopreservation and transplantation. Curr Opin Obstet Gynecol. 2001;13:263–8.

    Article  PubMed  CAS  Google Scholar 

  65. Yoon TK, Chung HM, Lim JM, Han SY, Ko JJ, Cha KY. Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization–embryo transfer program. Fertil Steril. 2000;74:180–1.

    Article  PubMed  CAS  Google Scholar 

  66. Fabbri R, Porcu E, Marsella T, Primavera MR, Seracchioli R, Ciotti PM, et al. Oocyte cryopreservation. Hum Reprod. 1998;13(Suppl 4):98–108.

    PubMed  Google Scholar 

  67. Trad FS, Toner M, Biggers JD. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes. Hum Reprod. 1999;14:1569–77.

    Article  PubMed  CAS  Google Scholar 

  68. Bianchi V, Coticchio G, Distratis V, Di Giusto N, Flamigni C, Borini A. Differential sucrose concentration during dehydration (0.2 mol/l) and rehydration (0.3 mol/l) increases the implantation rate of frozen human oocytes. Reprod Biomed Online. 2007;14:64–71.

    Article  PubMed  CAS  Google Scholar 

  69. Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod. 2001;16:411–6.

    Article  PubMed  CAS  Google Scholar 

  70. Sathananthan AH, Trounson A, Freemann L, Brady T. The effects of cooling human oocytes. Hum Reprod. 1988;3:968–77.

    PubMed  CAS  Google Scholar 

  71. Trad FS, Toner M, Biggers JD. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes. Hum Reprod. 1999;14:1569–77.

    Article  PubMed  CAS  Google Scholar 

  72. Stachecki JJ, Willadsen SM. Cryopreservation of mouse oocytes using a medium with low sodium content: effect of plunge temperature. Cryobiology 2000;40:4–12.

    Article  PubMed  CAS  Google Scholar 

  73. Eroglu A, Toner M, Toth TL. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Steril. 2002;77:152–8.

    Article  PubMed  Google Scholar 

  74. Hsieh YY, Tsai HD, Chang CC, Lo HY, Lai AC. Ultrarapid cryopreservation of human embryos: experience with 1,582 embryos. Fertil Steril. 1999;72:253–6.

    Article  PubMed  CAS  Google Scholar 

  75. Arav A, Zeron Y. Vitrification of bovine oocytes using modified minimum drop size technique (MSD) is effected by the composition and concentration of the vitrification solution and by cooling conditions. Theriogenology 1997;47:341.

    Article  Google Scholar 

  76. Luvoni GC, Pellizzari P, Battocchio M. Effects of slow and ultrarapid freezing on morphology and resumption of meiosis in immature cat oocytes. J Reprod Fertil Suppl. 1997;51:93–8.

    PubMed  CAS  Google Scholar 

  77. Tucker MJ, Wright G, Morton PC, Massey JB. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation. Fertil Steril. 1998;70:578–9.

    Article  PubMed  CAS  Google Scholar 

  78. Hochi S, Akiyama M, Kimura K, Hanada A. Vitrification of in vitro matured bovine oocytes in open pulled glass capillaries of different diameters. Theriogenology 2000;53:255.

    Google Scholar 

  79. Lane M, Bavister BD, Lyons EA, Forest KT. Containerless vitrification of mammalian oocytes and embryos. Nat Biotechnol. 1999;17:1234–6.

    Article  PubMed  CAS  Google Scholar 

  80. Kuwayama M. Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 2007;67:73–80.

    Article  PubMed  CAS  Google Scholar 

  81. Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod. 1999;14:3077–9.

    Article  PubMed  CAS  Google Scholar 

  82. Luvoni GC, Ellizzari P. Embryo development in vitro of cat oocytes cryopreserved at different maturation stages. Theriogenology 2000;53:1529–40.

    Article  PubMed  CAS  Google Scholar 

  83. Kuleshova LL, MacFarlane DR, Trounson AO, Shaw JM. Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology 1999;38:119–30.

    Article  PubMed  CAS  Google Scholar 

  84. Papis K, Shimizu M, Izaike Y. The effect of gentle pre-equlibration on survival and development rates of bovine in vitro matured oocytes vitrified in droplets. Theriogenology 1999;51:173.

    Article  Google Scholar 

  85. Gosden RG, Baird DT, Wade JC, Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at -196 degrees C. Hum Reprod. 1994;9:597–603.

    PubMed  CAS  Google Scholar 

  86. Nugent D, Meirow D, Brook PF, Aubard Y, Gosden RG. Transplantation in reproductive medicine: previous experience, present knowledge and future prospects. Hum Reprod Updat. 1997;3:267–80.

    Article  CAS  Google Scholar 

  87. Donnez J, Bassil S. Indications for cryopreservation of ovarian tissue. Hum Reprod Updat. 1998;4:248–59.

    Article  CAS  Google Scholar 

  88. Donnez J, Godin PA, Qu J, Nisolle M. Gonadal cryopreservation in the young patient with gynaecological malignancy. Curr Opin Obstet Gynecol. 2000;12:1–9.

    Article  PubMed  CAS  Google Scholar 

  89. Martinez-Madrid B, Dolmans MM, Van Langendonckt A, Defrere S, Donnez J. Freeze–thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82:1390–4.

    Article  PubMed  Google Scholar 

  90. Hovatta O, Silye R, Krausz T, Abir R, Margara R, Trew G, et al. Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol–sucrose as cryoprotectants. Hum Reprod. 1996;11:1268–72.

    PubMed  CAS  Google Scholar 

  91. Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R. Low temperature storage and grafting of human ovarian tissue. Hum Reprod. 1996;11:1487–91.

    PubMed  CAS  Google Scholar 

  92. Oktay K, Nugent D, Newton H, Salha O, Chatterjee P, Gosden RG. Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil Steril. 1997;67:481–6.

    Article  PubMed  CAS  Google Scholar 

  93. Newton H. The cryopreservation of ovarian tissue as a strategy for preserving the fertility of cancer patients. Hum Reprod Updat. 1998;4:237–47.

    Article  CAS  Google Scholar 

  94. Salle B, Demirci B, Franck M, Rudigoz RC, Guerin JF, Lornage J. Normal pregnancies and live births after autograft of frozen–thawed hemi-ovaries into ewes. Fertil Steril. 2002;77:403–8.

    Article  PubMed  Google Scholar 

  95. Liu J, Van der Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17:605–11.

    Article  PubMed  Google Scholar 

  96. Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T, et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet 2004;363:837–40.

    Article  PubMed  Google Scholar 

  97. Nisolle M, Casanas-Roux F, Qu J, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen–thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74:122–9.

    Article  PubMed  CAS  Google Scholar 

  98. Candy CJ, Wood MJ, Whittingham DG. Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries. J Reprod Fertil. 1997;110:11–9.

    PubMed  CAS  Google Scholar 

  99. Candy CJ, Wood MJ, Whittingham DG. Follicular development in cryopreserved marmoset ovarian tissue after transplantation. Hum Reprod. 1995;10:2334–8.

    PubMed  CAS  Google Scholar 

  100. O’Brien MJ, Pendola JK, Eppig JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod. 2003;68:1682–6.

    Article  PubMed  CAS  Google Scholar 

  101. Van Blerkom J, Davis PW. Cytogenetic, cellular, and developmental consequences of cryopreservation of immature and mature mouse and human oocytes. Microsc Res Tech. 1994;27:165–93.

    Article  PubMed  Google Scholar 

  102. Demirci B, Salle B, Frappart L, Franck M, Guerin JF, Lornage J. Morphological alterations and DNA fragmentation in oocytes from primordial and primary follicles after freezing–thawing of ovarian cortex in sheep. Fertil Steril. 2002;77:595–600.

    Article  PubMed  Google Scholar 

  103. Salehnia M, Abbasian Moghadam E, Rezazadeh Velojerdi M. Ultrastructure of follicles after vitrification of mouse ovarian tissue. Fertil Steril. 2002;78:644–5.

    Article  PubMed  Google Scholar 

  104. Isachenko E, Isachenko V, Rahimi G, Nawroth F. Cryopreservation of human ovarian tissue by direct plunging into liquid nitrogen. Eur J Obstet Gynecol Reprod Biol. 2003;108:186–93.

    PubMed  CAS  Google Scholar 

  105. Sugimoto M, Maeda S, Manabe N, Miyamoto H. Development of infantile rat ovaries autotransplanted after cryopreservation by vitrification. Theriogenology 2000;53:1093–103.

    Article  PubMed  CAS  Google Scholar 

  106. Migishima F, Suzuki-Migishima R, Song SY, Kuramochi T, Azuma S, Nishijima M, et al. Successful cryopreservation of mouse ovaries by vitrification. Biol Reprod. 2003;68:881–7.

    Article  PubMed  CAS  Google Scholar 

  107. Meirow D, Fasouliotis SJ, Nugent D, Schenker JG, Gosden RG, Rutherford AJ. A laparoscopic technique for obtaining ovarian cortical biopsy specimens for fertility conservation in patients with cancer. Fertil Steril. 1999;71:948–51.

    Article  PubMed  CAS  Google Scholar 

  108. Schnorr JA. Ovarian preservation for women with malignant diseases: new technologies may be around the corner. American Society for Reproductive Medicine—Menopausal Medicine. 2001;9:1–5.

    Google Scholar 

  109. Aubard Y, Piver P, Pech JC, Galinat S, Teissier MP. Ovarian tissue cryopreservation and gynecologic oncology: a review. Eur J Obstet Gynecol Reprod Biol. 2001;97:5–14.

    Article  PubMed  CAS  Google Scholar 

  110. Morris RT. A case of heteroplastic ovarian grafting followed by pregnancy, and the delivery of a living child. Med Rec. 1986;69:697–8.

    Google Scholar 

  111. Candy CJ, Wood MJ, Whittingham DG. Restoration of a normal reproductive lifespan after grafting of cryopreserved mouse ovaries. Hum Reprod. 2000;15:1300–4.

    Article  PubMed  CAS  Google Scholar 

  112. Oktay K. Ovarian tissue cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum Reprod Updat. 2001;7:526–34.

    Article  CAS  Google Scholar 

  113. Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342:1919.

    Article  PubMed  CAS  Google Scholar 

  114. Oktay K, Aydin BA, Karlikaya G. A technique for laparoscopic transplantation of frozen–banked ovarian tissue. Fertil Steril. 2001;75:1212–6.

    Article  PubMed  CAS  Google Scholar 

  115. Radford JA, Lieberman BA, Brison DR, Smith AR, Critchlow JD, Russell SA, et al. Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet 2001;357:1172–5.

    Article  PubMed  CAS  Google Scholar 

  116. Von Eye Corleta H, Corleta O, Capp E, Edelweiss MI. Subcutaneous autologous ovarian transplantation in Wistar rats maintains hormone secretion. Fertil Steril. 1998;70:16–9.

    Article  Google Scholar 

  117. Wells SA Jr, Ellis GJ, Gunnells JC, Schneider AB, Sherwood LM. Parathyroid autotransplantation in primary parathyroid hyperplasia. N Engl J Med. 1976;295:57–62.

    PubMed  Google Scholar 

  118. Wagner PK, Seesko HG, Rothmund M. Replantation of cryopreserved human parathyroid tissue. World J Surg. 1991;15:751–5.

    Article  PubMed  CAS  Google Scholar 

  119. Schnorr J, Oehninger S, Toner J, Hsiu J, Lanzendorf S, Williams R, et al. Functional studies of subcutaneous ovarian transplants in non-human primates: steroidogenesis, endometrial development, ovulation, menstrual patterns and gamete morphology. Hum Reprod. 2002;17:612–9.

    Article  PubMed  Google Scholar 

  120. Lee DM, Yeoman RR, Battaglia DE, Stouffer RL, Zelinski-Wooten MB, Fanton JW, et al. Live birth after ovarian tissue transplant. Nature 2004;428:137–8.

    Article  PubMed  CAS  Google Scholar 

  121. Oktay K, Aydin BA, Economos K, Rucinski J. Restoration of ovarian function after autologous transplantation of human ovarian tissue in the forearm. Fertil Steril. 2000;74(suppl 3):S90.

    Article  Google Scholar 

  122. Aubard Y, Piver P, Cogni Y, Fermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen–thawed ovarian cortex in sheep. Hum Reprod. 1999;14:2149–54.

    Article  PubMed  CAS  Google Scholar 

  123. Long HD, Zhou CG, Li YB, Yao SZ, Zheng M, Wu YP. Protective effect of reduced glutathione and uninastatin on cryopreserved human ovarian tissue after heterotopic transplantation in nod-scid mice. Fertil Steril. 2007;88:S337.

    Article  Google Scholar 

  124. Newton H, Picton H, Gosden RG. In vitro growth of oocyte–granulosa cell complexes isolated from cryopreserved ovine tissue. J Reprod Fertil. 1999;115:141–50.

    PubMed  CAS  Google Scholar 

  125. Eppig JJ, O’Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod. 1996;54:197–207.

    Article  PubMed  CAS  Google Scholar 

  126. Mousset-Simeon N, Jouannet P, Le Cointre L, Coussieu C, Poirot C. Comparison of three in vitro culture systems for maturation of early preantral mouse ovarian follicles. Zygote 2005;13:167–75.

    Article  PubMed  CAS  Google Scholar 

  127. Kim SS, Gosden RG, Radford JA, Harris M, Jox A. A model to test the safety of human ovarian tissue transplantation after cryopreservation: xenografts of ovarian tissues from cancer patients into NOD/LtSz-SCID mice. Fertil Steril. 1999;72:S3.

    Article  Google Scholar 

  128. Kim SS, Soules M, Gosden RG. The evidence of follicle maturation and subsequent ovulation in human ovarian tissue xenografted into severe combined immunodeficient (SCID) mice. Fertil Steril. 2000;74

  129. Elizur SE, Ben-Yehuda D, Hardan I, Dor J, Hardan I, Meirow D. Detection of microscopic metastasis of solid tumors and hematological malignancies in cryopreserved ovaries. Fertil Steril. 2004;82(Suppl 2):S116.

    Article  Google Scholar 

  130. Kim SS. Fertility preservation in female cancer patients: current developments and future directions. Fertil Steril. 2006;85:1–11.

    Article  PubMed  CAS  Google Scholar 

  131. Medicine EcotASfR. . Fertility preservation and reproduction in cancer patients. Fertil Steril. 2005;83:1622–8.

    Article  Google Scholar 

  132. Schover LR, Brey K, Lichtin A, Lipshultz LI, Jeha S. Knowledge and experience regarding cancer, infertility, and sperm banking in younger male survivors. J Clin Oncol. 2002;20:1880–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Wenling Zhang for searching literature and excellent help in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Tao.

Additional information

Capsule Cryopreservation of ovarian tissue and oocytes is a technology that holds promise for banking reproductive potential for the future. This paper reviews the scientific background, current developments and potential future applications of two methods for preserving female fertility: ovarian tissue cryopreservation and oocyte cryopreservation. It can help both cancer and fertility specialists in attempts to preserve fertility in young female cancer patients in the future.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, T., Del Valle, A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet 25, 287–296 (2008). https://doi.org/10.1007/s10815-008-9236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-008-9236-z

Keywords

Navigation