Journal of Assisted Reproduction and Genetics

, Volume 24, Issue 11, pp 541–546 | Cite as

PTEN and Akt expression during growth of human ovarian follicles

  • Maki Goto
  • Akira Iwase
  • Hisao Ando
  • Shozo Kurotsuchi
  • Toko Harata
  • Fumitaka Kikkawa



To assess the expression of PTEN and total and phosphorylated Akt in human ovarian follicles during follicular growth.


Immunohistochemistry of ovarian tissues and Western blotting and immunofluorescence of primary cultured luteinized granulosa cells for PTEN and Akt.


Immunoreactivity of Akt was found in the oocytes, granulosa cells and theca cells in primordial follicles, follicles at each growing stage and luteal cells. As the follicles grew, staining for PTEN became intense in the granulosa cells, whereas the intensity of phospho-Akt became weak. Western blotting and immunofluorescence analysis using primary cultured granulosa-lutein cells showed Akt and PTEN expression, and phosphorylation of Akt in vitro.


PTEN and Akt are present in the granulosa cells during folliculogenesis. An increase in PTEN may lead to changes in proliferation and/or differentiation of granulosa cells during follicular growth via regulation of Akt phosphorylation.


Akt Folliculogenesis Granulosa cells Phosphorylation PTEN 


  1. 1.
    Moor RM, Dai Y, Lee C, Fulka Jr. J. Oocyte maturation and embryonic failure. Hum Reprod Updat 1998;4:223–36.CrossRefGoogle Scholar
  2. 2.
    Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev 1999;20:535–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Bencomo E, Perez R, Arteaga MF, Acosta E, Pena O, Lopez L, et al. Apoptosis of cultured granulosa-lutein cells is reduced by insulin-like growth factor I and may correlate with embryo fragmentation and pregnancy rate. Fertil Steril 2006;85:474–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Quirk SM, Cowan RG, Harman RM, Hu CL, Porter DA. Ovarian follicular growth and atresia: the relationship between cell proliferation and survival. J Anim Sci 2004;82(E-Suppl):E40–52.PubMedGoogle Scholar
  5. 5.
    Guthrie HD, Garrett WM, Cooper BS. Follicle-stimulating hormone and insulin-like growth factor-I attenuate apoptosis in cultured porcine granulosa cells. Biol Reprod 1998;58:390–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson AL, Bridgham JT, Swenson JA. Activation of the Akt/protein kinase B signaling pathway is associated with granulosa cell survival. Biol Reprod 2001;64:1566–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Roberts Jr. CT. Control of insulin-like growth factor (IGF) action by regulation of IGF-I receptor expression. Endocr J 1996;43(Suppl):S49–55.PubMedGoogle Scholar
  8. 8.
    Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 1999;96:4240–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 1997;17:1595–606.PubMedGoogle Scholar
  10. 10.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Sumitomo M, Iwase A, Zheng R, Navarro D, Kaminetzky D, Shen R, et al. Synergy in tumor suppression by direct interaction of neutral endopeptidase with PTEN. Cancer Cell 2004;5:67–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Hu CL, Cowan RG, Harman RM, Quirk SM. Cell cycle progression and activation of Akt kinase are required for insulin-like growth factor I-mediated suppression of apoptosis in granulosa cells. Mol Endocrinol 2004;18:326–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Westfall SD, Hendry IR, Obholz KL, Rueda BR, Davis JS. Putative role of the phosphatidylinositol 3-kinase-Akt signaling pathway in the survival of granulosa cells. Endocrine 2000;12:315–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998;273:13375–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Leslie NR, Downes CP. PTEN function: how normal cells control it and tumour cells lose it. Biochem J 2004;382:1–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson GP, Bozinovski S. Acquired somatic mutations in the molecular pathogenesis of COPD. Trends Pharmacol Sci 2003;24:71–6.PubMedCrossRefGoogle Scholar
  17. 17.
    White ES, Thannickal VJ, Carskadon SL, Dickie EG, Livant DL, Markwart S, et al. Integrin alpha4beta1 regulates migration across basement membranes by lung fibroblasts: a role for phosphatase and tensin homologue deleted on chromosome 10. Am J Respir Crit Care Med 2003;168:436–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Gericke A, Munson M, Ross AH. Regulation of the PTEN phosphatase. Gene 2006;374:1–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Harata T, Ando H, Iwase A, Nagasaka T, Mizutani S, Kikkawa F. Localization of angiotensin II, the AT1 receptor, angiotensin-converting enzyme, aminopeptidase A, adipocyte-derived leucine aminopeptidase, and vascular endothelial growth factor in the human ovary throughout the menstrual cycle. Fertil Steril 2006;86:433–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Monniaux D, Pisselet C. Control of proliferation and differentiation of ovine granulosa cells by insulin-like growth factor-I and follicle-stimulating hormone in vitro. Biol Reprod 1992;46:109–19.PubMedCrossRefGoogle Scholar
  21. 21.
    Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten +/− mice. Science 1999;285:2122–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Weng LP, Brown JL, Eng C. PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet 2001;10:599–604.PubMedCrossRefGoogle Scholar
  23. 23.
    Dupont J, Renou JP, Shani M, Hennighausen L, LeRoith D. PTEN overexpression suppresses proliferation and differentiation and enhances apoptosis of the mouse mammary epithelium. J Clin Invest 2002;110:815–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao H, Dupont J, Yakar S, Karas M, LeRoith D. PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells. Oncogene 2004;23:786–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res 2002;57:195–220.PubMedCrossRefGoogle Scholar
  26. 26.
    Froment P, Bontoux M, Pisselet C, Monget P, Dupont J. PTEN expression in ovine granulosa cells increases during terminal follicular growth. FEBS Lett 2005;579:2376–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Eng C. Changes in endometrial PTEN expression throughout the human menstrual cycle. J Clin Endocrinol Metab 2000;85:2334–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maki Goto
    • 1
  • Akira Iwase
    • 1
    • 2
  • Hisao Ando
    • 1
  • Shozo Kurotsuchi
    • 1
  • Toko Harata
    • 1
    • 2
  • Fumitaka Kikkawa
    • 1
  1. 1.Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineShowa-kuJapan
  2. 2.Department of Maternal and Perinatal MedicineNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations