Skip to main content
Log in

The magic behind stem cells

  • Around the World
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

This review article summarizes historical development of stem cell research, presents current knowledge on the plasticity potential of both embryonic and adult stem cells and discusses on the future of stem cell based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, Benezra R. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 2004;306:247–52.

    PubMed  CAS  Google Scholar 

  2. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 2004;35:2385–9.

    PubMed  Google Scholar 

  3. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005;433:760–4.

    PubMed  CAS  Google Scholar 

  4. Geiger H, Rennebeck G, Van Zant G. Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci USA 2005;102:5102–7.

    PubMed  CAS  Google Scholar 

  5. Neumann E. Über die Bedeutung des Knochenmarks für die Blutbildung. Zentralblatt für die medizinischen Wissenschaften 1868;44:122.

    Google Scholar 

  6. Heape W. Preliminary note on the implantation and growth of mammalian ova within a foster mother. Proc Royal Soc London 1890;B48:457–8.

    Google Scholar 

  7. Lewis WH, Gregory PW. Cinematographs of living developing rabbit eggs. Science 1933;69:226–9.

    Google Scholar 

  8. Lewis WH, Wright ES. On the early development of the mouse egg. Carnegie Inst Contr Embryol 1935;25:113–43.

    Google Scholar 

  9. Pincus G, Saunders B. The comparative behaviour of mammalian eggs in vitro and in vivo. VI. The maturation of human ovarian ova. Anat Rec 1939;75:537–45.

    Google Scholar 

  10. Nicholas JS, Hall BV. Experiments on developing rats. II. The development of isolated blastomeres and fused eggs. J Exper Zool 1940;90:441–57.

    Google Scholar 

  11. Seidel F. Die Entwicklungspotenzen einer isolierten Blastomere des Zweizellstadiums der Säugetiere. Naturwissenschaften 1952;39:355–6.

    Google Scholar 

  12. Beatty RA, Fischberg M. Heteroploidy in mammals. 1. Spontaneous heteroploidy in pre-implantation mouse eggs. J Genet 1951;50:345–59.

    Google Scholar 

  13. Hertig AT, Rock J. Two human ova at the previllous stage, having a developmental age of about eight and nine days respectively. Carnegie Inst Contr Embryol 1949;33:169–86.

    CAS  Google Scholar 

  14. Beatty RA. Parthenogenesis and Polyploidy in Mammalian Development. Cambridge University Press, London, 1957.

    Google Scholar 

  15. Edwards RG. The experimental induction of gynogenesis in the mouse. I. Irradiation of the sperm by x-rays. Proc R Soc Lond B Biol Sci 1957;146:469–87.

    Article  PubMed  CAS  Google Scholar 

  16. Maximov A. Tissue cultures of young mammalian embryos. Carnegie Inst Contr Embryol 1925;16:47–113.

    Google Scholar 

  17. Tarkowski AK. Experimental studies on regulation in the development of isolated blastomeres of mouse eggs. Acta Theriol 1959;3:191–267.

    Google Scholar 

  18. Tarkowski AK. Experiments on the development of isolated blastomers of mouse eggs. Nature 1961;190:857–60.

    PubMed  CAS  Google Scholar 

  19. Mintz B. Formation of genetically mosaic mouse embryos, and early development of “lethal (T12/T12)-normal” mosaics. J Exp Zool 1964;157:273–92.

    PubMed  CAS  Google Scholar 

  20. Cole R, Edwards RG, Paul J. Cytodifferentiation in cell colonies and cell strains derived from cleaving ova and blastocysts of the rabbit. Exp Cell Res 1964;37:501–4.

    Google Scholar 

  21. Edwards RG. Personal pathways to embryonic stem cells. Reprod Biomed Online 2002;4:263–78.

    Article  PubMed  CAS  Google Scholar 

  22. Gardner RL. Mouse chimeras obtained by the injection of cells into the blastocyst. Nature 1968;220:596–7.

    PubMed  CAS  Google Scholar 

  23. Gardner RL. Contributions of blastocyst micromanipulation to the study of mammalian development. Bioessays 1998;20:168–80.

    PubMed  CAS  Google Scholar 

  24. Tarkowski AK. Mouse chimaeras developed from fused eggs. Nature 1961;190:857–60.

    PubMed  CAS  Google Scholar 

  25. Gandini E, Gartler SM, Angioni G, Argiolas N, Dell’Acqua G. Developmental implications of multiple tissue studies in G-6-PD deficient heterozygotes. Proc US Natl Acad Sci 1968;61:945–8.

    CAS  Google Scholar 

  26. Gearhart JO, Mintz B. Clonal origins of somites and their muscle derivatives: evidence from allophenic mice. Develop Biol 1972;29:27–37.

    PubMed  CAS  Google Scholar 

  27. Mintz B. Gene control of mammalian differentiation. Ann Rev Genetics 1974;8:411–740.

    CAS  Google Scholar 

  28. Mintz B. Gene control of mammalian pigmentary deposition. I. Clonal origin of melanocytes. Proc US Natl Acad Sci 1967;58:344–51.

    CAS  Google Scholar 

  29. Tarkowski AK, Wroblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 1967;18:155–80.

    PubMed  CAS  Google Scholar 

  30. McLaren A. Mammalian Chimaeras. Cambridge University Press, Cambridge, 1976.

    Google Scholar 

  31. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet 1978;2:366.

    PubMed  CAS  Google Scholar 

  32. Fishel S, Edwards RG, Evans CJ. Human chorionic gonadotrophin secreted by preimplantation embryos cultured in vitro. Science 1984;223:816–8.

    PubMed  CAS  Google Scholar 

  33. Edwards RG. Stem cells today: A. Origin and potential of embryo stem cells. Reprod Biomed Online 2004;8:275–306.

    Article  PubMed  CAS  Google Scholar 

  34. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–7.

    PubMed  CAS  Google Scholar 

  35. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.

    PubMed  CAS  Google Scholar 

  36. Hollands P. Differentiation and grafting of haemopoietic stem cells from early postimplantation mouse embryos. Development 1987;99:69–76.

    PubMed  CAS  Google Scholar 

  37. Hollands P. Embryonic haemopoietic stem cell grafts in the treatment of murine genetic anaemia. Br J Haematol 1988;70:157–63.

    PubMed  CAS  Google Scholar 

  38. Edwards RG, Beard HK. Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod 1997;3:863–905.

    PubMed  CAS  Google Scholar 

  39. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature. 2007;445:214–8.

    PubMed  CAS  Google Scholar 

  40. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–9.

    PubMed  CAS  Google Scholar 

  41. Pochampally RR, Neville BT, Schwarz EJ, Li MM, Prockop DJ. Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci USA 2004;101:9282–5.

    PubMed  CAS  Google Scholar 

  42. Geiger H, Sick S, Bonifer C, Muller AM. Globin gene expression is reprogrammed in chimeras generated by injecting adult hematopoietic stem cells into mouse blastocysts. Cell 1998;93:1055–65.

    PubMed  CAS  Google Scholar 

  43. Harder F, Henschler R, Junghahn I, Lamers MC, Muller AM. Human hematopoiesis in murine embryos after injecting human cord blood-derived hematopoietic stem cells into murine blastocysts. Blood 2002;99:719–21.

    PubMed  CAS  Google Scholar 

  44. Harder F, Kirchhof N, Petrovic S, Wiese S, Muller AM. Erythroid-like cells from neural stem cells injected into blastocysts. Exp Hematol 2004;32:673–82.

    PubMed  CAS  Google Scholar 

  45. Durr M, Harder F, Merkel A, Bug G, Henschler R, Muller AM. Chimaerism and erythroid marker expression after microinjection of human acute myeloid leukaemia cells into murine blastocysts. Oncogene 2003;22:9185–91.

    PubMed  Google Scholar 

  46. Oh H, Chi X, Bradfute SB, Mishina Y, Pocius J, Michael LH, Behringer RR, Schwartz RJ, Entman ML, Schneider MD. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann NY Acad Sci 2004;1015:182–9.

    PubMed  Google Scholar 

  47. Zech N, Koestenbauer S, Vanderzwalmen P, Schoonjans L, Danloy S, Zech H, Blaschitz A, Dohr G. Paraffin-embedded manipulated blastocysts: a tool to demonstrate stem cell plasticity? Reprod Biomed Online 2005;10:406–14.

    Article  PubMed  CAS  Google Scholar 

  48. Koestenbauer S, Vanderzwalmen P, Hammer A, Schoonjans L, Danloy S, Zech H, Dohr G, Zech NH. Apoptosis affects integration frequency: adult stem cells injected in blastocysts show high caspase-3 activity. Cell Biol Int 2006;doi:10.1016/j.cellbi. 2006.11.023.

  49. Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 2002;297:1299.

    PubMed  CAS  Google Scholar 

  50. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004;10:494–501.

    PubMed  CAS  Google Scholar 

  51. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664–8.

    PubMed  CAS  Google Scholar 

  52. Orkin SH, Zon LI. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 2002;3:323–8.

    PubMed  CAS  Google Scholar 

  53. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlstrom H, Lendahl U, Frisen J. Generalized potential of adult neural stem cells. Science 2000;288:1660–3.

    PubMed  CAS  Google Scholar 

  54. Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M, Mora M, DeAngelis MG, Fiocco R, Cossu G, Vescovi AL. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 2000;3:986–91.

    PubMed  CAS  Google Scholar 

  55. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002;416:545–8.

    PubMed  CAS  Google Scholar 

  56. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416:542–5.

    PubMed  CAS  Google Scholar 

  57. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003;425:968–73.

    PubMed  CAS  Google Scholar 

  58. Morshead CM, Benveniste P, Iscove NN, Van Der Kooy D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 2002;8:268–73.

    PubMed  CAS  Google Scholar 

  59. Jang YY, Sharkis SJ. Metamorphosis from bone marrow derived primitive stem cells to functional liver cells. Cell Cycle 2004;3:980–98.

    PubMed  CAS  Google Scholar 

  60. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS. Lack of a fusion requirement for development of bone marrow-derived epithelia. Science 2004;305:90–3.

    PubMed  CAS  Google Scholar 

  61. Almeida-Porada G, Porada CD, Chamberlain J, Torabi A, Zanjani ED. Formation of human hepatocytes by human hematopoietic stem cells in sheep. Blood 2004;104:2582–90.

    PubMed  CAS  Google Scholar 

  62. Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci 2004;117:5393–404.

    PubMed  CAS  Google Scholar 

  63. Wurmser AE, Nakashima K, Summers RG, Toni N, D’Amour KA, Lie DC, Gage FH. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 2004;430:350–6.

    PubMed  CAS  Google Scholar 

  64. Quesenberry PJ, Dooner G, Dooner M, Abedi M. Developmental biology: Ignoratio elenchi: red herrings in stem cell research. Science 2005;308:1121–2.

    PubMed  CAS  Google Scholar 

  65. Bonde J, Hess DA, Nolta JA. Recent advances in hematopoietic stem cell biology. Curr Opin Hematol 2004;11:392–8.

    PubMed  Google Scholar 

  66. Virchow R. Editorial Archive fuer pathologische. Anat Physiol Klin Med 1855;8:23–54.

    Google Scholar 

  67. Jordan HE. The History of the Primordial Germ Cells in the Loggerhead Turtle Embryo. Proc Natl Acad Sci USA 1917;3:271–5.

    PubMed  CAS  Google Scholar 

  68. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005;19:1118–27.

    PubMed  CAS  Google Scholar 

  69. Kucia M, Ratajczak J, Ratajczak MZ. Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 2005;97:133–46.

    PubMed  CAS  Google Scholar 

  70. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006;20:857–69.

    PubMed  CAS  Google Scholar 

  71. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 2006;168:1879–88.

    PubMed  CAS  Google Scholar 

  72. Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ, Lin YC, Chen SH, Yu J. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 2006;103:9530–5.

    PubMed  CAS  Google Scholar 

  73. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006;440:1199–203.

    PubMed  CAS  Google Scholar 

  74. Dyce PW, Wen L, Li J. In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 2006;8:384–90.

    PubMed  CAS  Google Scholar 

  75. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, Gromoll J, Engel W. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006;86:654–63.

    PubMed  CAS  Google Scholar 

  76. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ. Morphological and molecular characterization of novel population of CXCR4(+) SSEA-4(+) Oct-4(+) very small embryonic-like cells purified from human cord blood – preliminary report. Leukemia 2006; doi:10.1038/sj.leu.2404470.

  77. Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, Firpo MT, Pera RA. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004;13:727–39.

    PubMed  Google Scholar 

  78. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 2005;166:1781–91.

    PubMed  CAS  Google Scholar 

  79. Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A. Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 2003;42:162–5.

    CAS  Google Scholar 

  80. Asano T, Sasaki K, Kitano Y, Terao K, Hanazono Y. In vivo tumor formation from primate embryonic stem cells. Methods Mol Biol 2006;329:459–67.

    PubMed  Google Scholar 

  81. Thinyane K, Baier PC, Schindehutte J, Mansouri A, Paulus W, Trenkwalder C, Flugge G, Fuchs E. Fate of pre-differentiated mouse embryonic stem cells transplanted in unilaterally 6-hydroxydopamine lesioned rats: histological characterization of the grafted cells. Brain Res 2005;1045:80–7.

    PubMed  CAS  Google Scholar 

  82. Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 2004;45:4251–5.

    PubMed  Google Scholar 

  83. Koch CA, Jordan CE, Platt JL. Complement-dependent control of teratoma formation by embryonic stem cells. J Immunol 2006;177:4803–9.

    PubMed  CAS  Google Scholar 

  84. Chung S, Shin BS, Hedlund E, Pruszak J, Ferree A, Kang UJ, Isacson O, Kim KS. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem 2006;97:1467–80.

    PubMed  CAS  Google Scholar 

  85. Dihne M, Bernreuther C, Hagel C, Wesche KO, Schachner M. Embryonic stem cell-derived neuronally committed precursor cells with reduced teratoma formation after transplantation into the lesioned adult mouse brain. Stem Cells 2006;24:1458–66.

    PubMed  Google Scholar 

  86. Fukuda H, Takahashi J, Watanabe K, Hayashi H, Morizane A, Koyanagi M, Sasai Y, Hashimoto N. Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells 2006;24:763–71.

    PubMed  CAS  Google Scholar 

  87. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 2004;167:723–34.

    PubMed  CAS  Google Scholar 

  88. Kumashiro Y, Asahina K, Ozeki R, Shimizu-Saito K, Tanaka Y, Kida Y, Inoue K, Kaneko M, Sato T, Teramoto K, Arii S, Teraoka H. Enrichment of hepatocytes differentiated from mouse embryonic stem cells as a transplantable source. Transplantation 2005;79:550–7.

    PubMed  Google Scholar 

  89. Shibata H, Ageyama N, Tanaka Y, Kishi Y, Sasaki K, Nakamura S, Muramatsu S, Hayashi S, Kitano Y, Terao K, Hanazono Y. Improved safety of hematopoietic transplantation with monkey embryonic stem cells in the allogeneic setting. Stem Cells 2006;24:1450–7.

    PubMed  Google Scholar 

  90. Cooke MJ, Stojkovic M, Przyborski SA. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev 2006;15:254–9.

    PubMed  CAS  Google Scholar 

  91. Wakitani S, Aoki H, Harada Y, Sonobe M, Morita Y, Mu Y, Tomita N, Nakamura Y, Takeda S, Watanabe TK, Tanigami A. Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints. Cell Transplant 2004;13:331–6.

    PubMed  Google Scholar 

  92. Nelson TJ, Ge ZD, Van Orman J, Barron M, Rudy-Reil D, Hacker TA, Misra R, Duncan SA, Auchampach JA, Lough JW. Improved cardiac function in infarcted mice after treatment with pluripotent embryonic stem cells. Anat Rec A Discov Mol Cell Evol Biol 2006;288:1216–24.

    PubMed  Google Scholar 

  93. Behfar A, Hodgson DM, Zingman LV, Perez-Terzic C, Yamada S, Kane GC, Alekseev AE, Puceat M, Terzic A. Administration of allogenic stem cells dosed to secure cardiogenesis and sustained infarct repair. Ann NY Acad Sci 2005;1049:189–98.

    PubMed  Google Scholar 

  94. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957;257:491–6.

    Article  PubMed  CAS  Google Scholar 

  95. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, Li H. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 2004;110:1847–54.

    PubMed  CAS  Google Scholar 

  96. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 2002;115:2131–8.

    PubMed  CAS  Google Scholar 

  97. Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, Pompilio G, Bonanno G, Scambia G, Capogrossi MC. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 2003;93:e51–e62.

    PubMed  Google Scholar 

  98. Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR, Mariotti A, Vecchio FM, Nestola M, Monego G, Michetti F, Mancuso S, Pola P, Leone G, Gasbarrini G, Gasbarrini A. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004;36:603–13.

    PubMed  CAS  Google Scholar 

  99. Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K, Rae F, Forrester L, Turner ML, Hayes PC, Harrison DJ, Bickmore WA, Plevris JN. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 2003;124:1891–900.

    PubMed  Google Scholar 

  100. Bieback K, Kern S, Kluter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 2004;226:625–34.

    Google Scholar 

  101. Gang EJ, Hong SH, Jeong JA, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2004;321:102–8.

    PubMed  CAS  Google Scholar 

  102. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Muller HW, Zanjani E, Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004;200:123–35.

    PubMed  Google Scholar 

  103. Zhao Y, Mazzone T. Human umbilical cord blood-derived macrophages retain pluripotentiality after thrombopoietin expansion. Exp Cell Res 2005;310:311–8.

    PubMed  CAS  Google Scholar 

  104. McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, Tilton R, Denner L. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 2005;38:245–55.

    PubMed  CAS  Google Scholar 

  105. Karlmark KR, Freilinger A, Marton E, Rosner M, Lubec G, Hengstschlager M. Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells. Int J Mol Med 2005;16:987–92.

    PubMed  CAS  Google Scholar 

  106. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 2003;18:1489–93.

    PubMed  Google Scholar 

  107. Zhao Y, Wang H, Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 2006;312:2454–64.

    PubMed  CAS  Google Scholar 

  108. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25:100–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas H. Zech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zech, N.H., Shkumatov, A. & Koestenbauer, S. The magic behind stem cells. J Assist Reprod Genet 24, 208–214 (2007). https://doi.org/10.1007/s10815-007-9123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-007-9123-z

Keywords

Navigation