Skip to main content

Advertisement

Log in

Granulocyte-macrophage colony stimulating factor (GM-CSF) and co-culture can affect post-thaw development and apoptosis in cryopreserved embryos

  • Assisted Reproduction
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose: The objective of this study was to evaluate the effects of growth factor supplementation and Vero cell co-culture on apoptosis and development of frozen thawed one-cell mouse embryos.

Methods: The following treatment regimens were assessed: (a) control medium (b) Vero cell co-culture and (c) growth factor supplemented medium. The individual growth factors tested were: GM-CSF, IGF-I, IGF-II, TNF-α, FGF-4, LIF, TGF-α, TGF-β, IL-6, PDGF and EGF. Blastocyst development and differentiation were monitored. At termination of the experiments, overall blastomere number and apoptosis were assessed using the TUNEL assay.

Results: No differences were observed in blastulation and hatching rates. ICM differentiation in thawed embryos was notably improved with either co-culture or growth factor supplementation. The only growth factor significantly modulating apoptosis in thawed embryos was granulocyte-macrophage colony stimulating factor (GM-CSF). GM-CSF enhanced continued cell survival and prevented apoptosis but did not influence overall cell number in developing blastocysts. Vero cell co-culture significantly increased cell number in blastocysts (124±42 vs 100±44 in control; P<0.05). Embryonic apoptosis was higher in the co-cultured embryos. The increased presence of apoptotic cells in blastocysts of high cell number may reflect the regulatory role of apoptosis in balancing ICM: TE ratios.

Conclusion: These data indicate that culture conditions can modulate post-thaw embryonic development and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hardy K, Handyside AH, Winston RM. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 1989;107:597–604

    PubMed  CAS  Google Scholar 

  2. Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod 1997;56:1088–96

    Article  PubMed  CAS  Google Scholar 

  3. Exley GE, Tang C, McElhinny AS, Warner CM. Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos. Biol Reprod 1999;61:231–9

    Article  PubMed  CAS  Google Scholar 

  4. Kurzawa R, Glabowski W, Wenda-Rozewicka L. Evaluation of mouse preimplantation embryos cultured in media enriched with insulin-like growth factors I and II, epidermal growth factor and tumor necrosis factor alpha. Folia Histochem Cytobiol 2001;39:245–51

    PubMed  CAS  Google Scholar 

  5. Kamjoo M, Brison DR, Kimber SJ. Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture. Mol Reprod Dev 2002;61:67–77

    Article  PubMed  CAS  Google Scholar 

  6. Smith S, Francis R, Guilbert L, Baker PN. Growth factor rescue of cytokine mediated trophoblast apoptosis. Placenta 2002;23:322–30

    Article  PubMed  CAS  Google Scholar 

  7. Spanos S, Rice S, Karagiannis P, Taylor D, Becker DL, Winston RM, Hardy K. Caspase activity and expression of cell death genes during development of human preimplantation embryos. Reproduction 2002;124:353–63

    Article  PubMed  CAS  Google Scholar 

  8. Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol 2002;172:221–36

    Article  PubMed  CAS  Google Scholar 

  9. Huppertz B, Herrler A. Regulation of proliferation and apoptosis during development of the preimplantation embryo and the placenta. Birth Defects Res C Embryo Today 2005;75:249–61

    Article  PubMed  CAS  Google Scholar 

  10. Spanos S, Becker DL, Winston RM, Hardy K. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod 2000;63:1413–20

    Article  PubMed  CAS  Google Scholar 

  11. Byrne AT, Southgate J, Brison DR, Leese HJ. Effects of insulin-like growth factors I and II on tumour-necrosis-factor-alpha-induced apoptosis in early murine embryos. Reprod Fertil Dev 2002;14:79–83

    Article  PubMed  CAS  Google Scholar 

  12. Byrne AT, Southgate J, Brison DR, Leese HJ. Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor (IGF) superfamily. Mol Reprod Dev 2002;62:489–95

    Article  PubMed  CAS  Google Scholar 

  13. Sjoblom C, Wikland M, Robertson SA. Granulocyte-macrophage colony-stimulating factor (GM-CSF) acts independently of the beta common subunit of the GM-CSF receptor to prevent inner cell mass apoptosis in human embryos. Biol Reprod 2002;67:1817–23

    Article  PubMed  CAS  Google Scholar 

  14. Gopichandran N, Leese HJ. The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction 2006;131:269–77

    Article  PubMed  CAS  Google Scholar 

  15. Bongso A, Soon-Chye N, Sathananthan H, Lian NP, Rauff M, Ratnam S. Improved quality of human embryos when co-cultured with human ampullary cells. Hum Reprod 1989;4:706–13

    PubMed  CAS  Google Scholar 

  16. Menezo YJ, Guerin JF, Czyba JC. Improvement of human early embryo development in vitro by coculture on monolayers of Vero cells. Biol Reprod 1990;42:301–6

    Article  PubMed  CAS  Google Scholar 

  17. Wiemer KE, Hoffman DI, Maxson WS, Eager S, Muhlberger B, Fiore I, Cuervo M. Embryonic morphology and rate of implantation of human embryos following co-culture on bovine oviductal epithelial cells. Hum Reprod 1993;8:97–101

    PubMed  CAS  Google Scholar 

  18. Desai NN, Kennard EA, Kniss DA, Friedman CI. Novel human endometrial cell line promotes blastocyst development. Fertil Steril 1994;61:760–6

    PubMed  CAS  Google Scholar 

  19. Desai N, F A-H, Goldfarb J. Sequential assesment of embryonic morphology in D5 transfer cycles and relationship to pregnancy outcome. Fertil Steril 2006;86:171.

    Article  Google Scholar 

  20. O’Neill C. Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod 1997;56:229–37

    Article  PubMed  CAS  Google Scholar 

  21. Wuu YD, Pampfer S, Becquet P, Vanderheyden I, Lee KH, De Hertogh R. Tumor necrosis factor alpha decreases the viability of mouse blastocysts in vitro and in vivo. Biol Reprod 1999;60:479–83

    Article  PubMed  CAS  Google Scholar 

  22. Desai N, Lawson J, Goldfarb J. Assessment of growth factor effects on post-thaw development of cryopreserved mouse morulae to the blastocyst stage. Hum Reprod 2000;15:410–8

    Article  PubMed  CAS  Google Scholar 

  23. Karagenc L, Lane M, Gardner DK. Granulocyte-macrophage colony-stimulating factor stimulates mouse blastocyst inner cell mass development only when media lack human serum albumin. Reprod Biomed Online 2005;10:511–8

    Article  PubMed  CAS  Google Scholar 

  24. Boonkusol D, Gal AB, Bodo S, Gorhony B, Kitiyanant Y, Dinnyes A. Gene expression profiles and in vitro development following vitrification of pronuclear and 8-cell stage mouse embryos. Mol Reprod Dev 2006;73:700–8

    Article  PubMed  CAS  Google Scholar 

  25. Nematollahi N, Valojerdi MR. Effect of Vero cell coculture on the development of frozen-thawed two-cell mouse embryos. J Assist Reprod Genet 1999;16:380–4

    Article  PubMed  CAS  Google Scholar 

  26. Valojerdi MR, Movahedin M, Hosseini A. Improvement of development of vitrified two-cell mouse embryos by vero cell coculture. J Assist Reprod Genet 2002;19:31–8

    Article  PubMed  Google Scholar 

  27. Mtango NR, Varisanga MD, Dong YJ, Rajamahendran R, Suzuki T. Growth factors and growth hormone enhance in vitro embryo production and post-thaw survival of vitrified bovine blastocysts. Theriogenology 2003;59:1393–1402

    Article  PubMed  CAS  Google Scholar 

  28. Xu J, Cheung TM, Chan ST, Ho PC, Yeung WS. Human oviductal cells reduce the incidence of apoptosis in cocultured mouse embryos. Fertil Steril 2000;74:1215–9

    Article  PubMed  CAS  Google Scholar 

  29. Xu JS, Lee YL, Lee KF, Kwok KL, Lee WM, Luk JM, Yeung WS. Embryotrophic factor-3 from human oviductal cells enhances proliferation, suppresses apoptosis and stimulates the expression of the beta1 subunit of sodium-potassium ATPase in mouse embryos. Hum Reprod 2004;19:2919–26

    Article  PubMed  CAS  Google Scholar 

  30. Ouhibi N, Hamidi J, Guillaud J, Menezo Y. Co-culture of 1-cell mouse embryos on different cell supports. Hum Reprod 1990;5:737–43

    PubMed  CAS  Google Scholar 

  31. Desai N, Goldfarb J. Co-cultured human embryos may be subjected to widely different microenvironments: pattern of growth factor/cytokine release by Vero cells during the co-culture interval. Hum Reprod 1998;13:1600–5

    Article  PubMed  CAS  Google Scholar 

  32. Desai N, Lawson J, Goldfarb J. Effect of culture regimen on blastocyst development, cell number and differentiation: Comparison of commercial blastocyst culture media to co-culture on Vero cell monolayers. Fertil Steril 2000;74:S40–S41.

    Google Scholar 

  33. Menezo YJ, Sakkas D, Janny L. Co-culture of the early human embryo: factors affecting human blastocyst formation in vitro. Microsc Res Tech 1995;32:50–6

    Article  PubMed  CAS  Google Scholar 

  34. Desai N, Kinzer D, Loeb A, Goldfarb J. Use of Synthetic Serum Substitute and alpha-minimum essential medium for the extended culture of human embryos to the blastocyst stage. Hum Reprod 1997;12:328–35

    Article  PubMed  CAS  Google Scholar 

  35. Bongso A, Fong C, Ng S. Coculture techniques for blastocyst transfer and embryonic stem cell production. Assist Reprod Rev 1995;5:106–14

    Google Scholar 

  36. Chegini N. Oviductal-derived growth factors and cytokines: implication in preimplantation. Semin Reprod Endocrinol 1996;14:219–29

    Article  PubMed  CAS  Google Scholar 

  37. Srivastava MD, Lippes J, Srivastava BI. Cytokines of the human reproductive tract. Am J Reprod Immunol 1996;36:157–66

    PubMed  CAS  Google Scholar 

  38. Tsai YJ, Lee RK, Lin SP, Chen YH. Identification of a novel platelet-derived growth factor-like gene, fallotein, in the human reproductive tract. Biochim Biophys Acta 2000;1492:196–202

    PubMed  CAS  Google Scholar 

  39. Kimber SJ. Leukaemia inhibitory factor in implantation and uterine biology. Reproduction 2005;130:131–45

    Article  PubMed  CAS  Google Scholar 

  40. Carnegie JA, Morgan JJ, McDiarmid N, Durnford R. Influence of protein supplements on the secretion of leukaemia inhibitory factor by mitomycin-pretreated Vero cells: possible application to the in vitro production of bovine blastocysts with high cryotolerance. J Reprod Fertil 1999;117:41–8

    Article  PubMed  CAS  Google Scholar 

  41. Roudebush WE, Often NL, Butler WJ. Alpha-minimum essential medium (MEM) enhances in vitro hatched blastocyst development and cell number per embryo over Ham's F-10. J Assist Reprod Genet 1994;11:203–7

    Article  PubMed  CAS  Google Scholar 

  42. Frasor J, Sherbahn R, Soltes B, Molo MW, Binor Z, Radwanska E, Rawlins RG. Optimizing tubal epithelial cell growth promotes mouse embryo hatching in coculture. J Assist Reprod Genet 1996;13:423–30

    Article  PubMed  CAS  Google Scholar 

  43. Paria BC, Dey SK. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc Natl Acad Sci USA 1990;87:4756–60

    Article  PubMed  CAS  Google Scholar 

  44. Brison DR, Schultz RM. Increased incidence of apoptosis in transforming growth factor alpha-deficient mouse blastocysts. Biol Reprod 1998;59:136–44

    Article  PubMed  CAS  Google Scholar 

  45. Robertson SA, Sjoblom C, Jasper MJ, Norman RJ, Seamark RF. Granulocyte-macrophage colony-stimulating factor promotes glucose transport and blastomere viability in murine preimplantation embryos. Biol Reprod 2001;64:1206–15

    Article  PubMed  CAS  Google Scholar 

  46. Cheung LP, Leung HY, Bongso A. Effect of supplementation of leukemia inhibitory factor and epidermal growth factor on murine embryonic development in vitro, implantation, and outcome of offspring. Fertil Steril 2003;80 Suppl 2:727–35

    Article  PubMed  Google Scholar 

  47. Diaz-Cueto L, Gerton GL. The influence of growth factors on the development of preimplantation mammalian embryos. Arch Med Res 2001;32:619–26

    Article  PubMed  CAS  Google Scholar 

  48. Nandi S, Ravindranatha BM, Gupta PS, Raghu HM, Sarma PV. Developmental competence and post-thaw survivability of buffalo embryos produced in vitro: effect of growth factors in oocyte maturation medium and of embryo culture system. Theriogenology 2003;60:1621–31

    Article  PubMed  CAS  Google Scholar 

  49. Behr B, Mooney S, Wen Y, Polan ML, Wang H. Preliminary experience with low concentration of granulocyte-macrophage colony-stimulating factor: a potential regulator in preimplantation mouse embryo development and apoptosis. J Assist Reprod Genet 2005;22:25–32

    Article  PubMed  Google Scholar 

  50. Azadbakht M, Valojerdi MR, Mowla SJ. Development of mouse embryos co-cultured with polarized or non-polarized uterine epithelial cells using sequential culture media. Anim Reprod Sci 2006.

  51. Lane M, Maybach JM, Gardner DK. Addition of ascorbate during cryopreservation stimulates subsequent embryo development. Hum Reprod 2002;17:2686–93

    Article  PubMed  CAS  Google Scholar 

  52. Tatemoto H, Ootaki K, Shigeta K, Muto N. Enhancement of developmental competence after in vitro fertilization of porcine oocytes by treatment with ascorbic acid 2-O-alpha-glucoside during in vitro maturation. Biol Reprod 2001;65:1800–6

    Article  PubMed  CAS  Google Scholar 

  53. Hardy K, Stark J, Winston RM. Maintenance of the inner cell mass in human blastocysts from fragmented embryos. Biol Reprod 2003;68:1165–9

    Article  PubMed  CAS  Google Scholar 

  54. Hardy K, Warner A, Winston RM, Becker DL. Expression of intercellular junctions during preimplantation development of the human embryo. Mol Hum Reprod 1996;2:621–32

    Article  PubMed  CAS  Google Scholar 

  55. Hardy K. Cell death in the mammalian blastocyst. Mol Hum Reprod 1997;3:919–25

    Article  PubMed  CAS  Google Scholar 

  56. Erickson GF. Defining apoptosis: players and systems. J Soc Gynecol Investig 1997;4:219–28

    Article  PubMed  CAS  Google Scholar 

  57. Handyside A, Hunter S. Cell division and death in the mouse blastocyst before implantation. Roux’s Archives of Developmental Biology 1986;195:519–26

    Article  Google Scholar 

  58. Giacomini G, Tabibzadeh SS, Satyaswaroop PG, Bonsi L, Vitale L, Bagnara GP, Strippoli P, et al. Epithelial cells are the major source of biologically active granulocyte macrophage colony-stimulating factor in human endometrium. Hum Reprod 1995;10:3259–63

    PubMed  CAS  Google Scholar 

  59. Fabian D, Il'kova G, Rehak P, Czikkova S, Baran V, Koppel J. Inhibitory effect of IGF-I on induced apoptosis in mouse preimplantation embryos cultured in vitro. Theriogenology 2004;61:745–55

    Article  PubMed  CAS  Google Scholar 

  60. Glabowski W, Kurzawa R, Wiszniewska B, Baczkowski T, Marchlewicz M, Brelik P. Growth factors effects on preimplantation development of mouse embryos exposed to tumor necrosis factor alpha. Reprod Biol 2005;5:83–99

    PubMed  Google Scholar 

  61. Madge LA, Pober JS. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem 2000;275:15458–65

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support: Research grant from the Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Desai.

Additional information

Presented in part at: the 60th annual meeting of the American Society for Reproductive Medicine, 2004, October 16–20, Philadelphia, PA, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, N., Kattal, N., AbdelHafez, F.F. et al. Granulocyte-macrophage colony stimulating factor (GM-CSF) and co-culture can affect post-thaw development and apoptosis in cryopreserved embryos. J Assist Reprod Genet 24, 215–222 (2007). https://doi.org/10.1007/s10815-007-9119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-007-9119-8

Keywords

Navigation