Exposure of mouse cumulus cell nuclei to porcine ooplasmic extract eliminates TATA box protein binding to chromatin, but has no effect on DNA methylation

  • Guo Qing Tong
  • Boon Chin Heng
  • Soon Chye Ng
Animal Studies


Purpose: The low cloning efficiency with SCNT is due to incomplete or partial reprogramming of the donor somatic cell nuclei after microinjection into the enucleated oocyte. A possible solution may be to initiate nuclear reprogramming prior to SCNT.

Methods: Pre-exposure of donor somatic cell nuclei to a novel porcine ooplasmic extract prior to microinjection could possibly extend the duration of exposure to ooplamic nuclear reprogramming factors. The effects of the porcine ooplamic extract on two major markers of nuclear preprogramming: (1) TATA box protein binding to chromation and (2) DNA methylation was investigated.

Results: The results showed that pre-exposure of mouse cumulus cell nuclei to porcine ooplamic extract drastically reduced TATA box protein binding to chromatin, but had no effect on DNA methylation.

Conclusions: Pre-exposure to the porcine ooplasmic extract had some limited effects on nuclear reprogramming. Whether this can lead to enhanced cloning efficiency needs to be further investigated.


Methylation Nuclear reprogramming Ooplasm Porcine TATA box 


  1. 1.
    Wells DN, Misica PM, Tervit HR, Vivanco WH. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod Fertil Dev 1998;10(4):369–78.PubMedCrossRefGoogle Scholar
  2. 2.
    Brambrink T, Hochedlinger K, Bell G, Jaenisch R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci USA 2006;103(4):933–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 1997;278(5346):2130–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002;295(5557):1089–92.PubMedCrossRefGoogle Scholar
  5. 5.
    McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 2000;405(6790):1066–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Young LE, Beaujean N. DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim Reprod Sci 2004;82–83:61–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Li L, Connelly MC, Wetmore C, Curran T, Morgan JI. Mouse embryos cloned from brain tumors. Cancer Res 2003;63(11):2733–6.PubMedGoogle Scholar
  8. 8.
    Gao S, Latham KE. Maternal and environmental factors in early cloned embryo development. Cytogenet Genome Res 2004;105(2–4):279–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE. Somatic cell nuclear transfer. Nature 2002;419(6907):583–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Gurdon JB, Byrne JA, Simonsson S. Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci USA. 2003;100 (Suppl 1):11819–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Heindryckx B, Rybouchkin A, Van Der Elst J, Dhont M. Serial pronuclear transfer increases the developmental potential of in vitro-matured oocytes in mouse cloning. Biol Reprod 2002;67(6):1790–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Worrad DM, Schultz RM. Regulation of gene expression in the preimplantation mouse embryo: temporal and spatial patterns of expression of the transcription factor Sp1. Mol Reprod Dev 1997;46(3):268–77.PubMedCrossRefGoogle Scholar
  13. 13.
    Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 2004;6(10):984–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Tong GQ, Heng BC, Chen NQ, Yip WY, Ng SC. Effects of elevated temperature in vivo on the maturational and developmental competence of porcine germinal vesicle stage oocytes. J Anim Sci 2004;82(11):3175–80.PubMedGoogle Scholar
  15. 15.
    Piyathilake CJ, Johanning GL, Frost AR, Whiteside MA, Manne U, Grizzle WE, Heimburger DC, Niveleau A. Immunohistochemical evaluation of global DNA methylation: comparison with in vitro radiolabeled methyl incorporation assay. Biotech Histochem 2000;75(6):251–8.PubMedGoogle Scholar
  16. 16.
    Daniels R, Hall VJ, French AJ, Korfiatis NA, Trounson AO. Comparison of gene transcription in cloned bovine embryos produced by different nuclear transfer techniques. Mol Reprod Dev 2001;60(3):281–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Bortvin A, Eggan K, Skaletsky H, Akutsu H, Berry DL, Yanagimachi R, Page DC, Jaenisch R. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 2003;130(8):1673–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Hansis C, Barreto G, Maltry N, Niehrs C. Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr Biol 2004;14(16):1475–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Kikyo N, Wade PA, Guschin D, Ge H, Wolffe AP. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 2000;289(5488):2360–2.PubMedCrossRefGoogle Scholar
  20. 20.
    Hakelien AM, Landsverk HB, Robl JM, Skalhegg BS, Collas P. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat Biotechnol 2002;20(5):460–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Hakelien AM, Collas P. Novel approaches to transdifferentiation. Cloning Stem Cells 2002;4(4):379–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P. Cloned calves from chromatin remodeled in vitro. Biol Reprod 2004;70(1):146–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Hernandez N. TBP, a universal eukaryotic transcription factor? Genes Dev 1993;7(7B):1291–308.PubMedGoogle Scholar
  24. 24.
    Evsikov AV, de Vries WN, Peaston AE, Radford EE, Fancher KS, Chen FH, Blake JA, Bult CJ, Latham KE, Solter D, Knowles BB. Systems biology of the 2-cell mouse embryo. Cytogenet Genome Res 2004;105(2–4):240–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001;293(5532):1089–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Reik W, Dean W. DNA methylation and mammalian epigenetics. Electrophoresis 2001;22(14):2838–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Beaujean N, Taylor J, Gardner J, Wilmut I, Meehan R, Young L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol Reprod 2004;71(1):185–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Kang YK, Yeo S, Kim SH, Koo DB, Park JS, Wee G, Han JS, Oh KB, Lee KK, Han YM. Precise recapitulation of methylation change in early cloned embryos. Mol Reprod Dev 2003;66(1):32–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Guo Qing Tong
    • 1
  • Boon Chin Heng
    • 1
  • Soon Chye Ng
    • 1
  1. 1.Department of Obstetrics & Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations