Highly Sensitive Detection of Lead in Aqueous Solution using Laser-Induced Breakdown Spectroscopy Coupled with Adsorption Technique

Two types of adsorbents, zinc oxide (ZnO) and zeolite, have been used to probe the lowest detectable limit of lead (Pb) dissolved in water. To achieve the goal, water-soluble Pb complexes were produced by dissolving in water or titrating with HNO3 acid with different concentrations of four different compounds of Pb. The dissolved Pb complexes were then allowed to be adsorbed onto ZnO or zeolite. LIBS spectra of the Pb–ZnO and Pb–zeolite composites were recorded in the 331.5–370.5, and 355–394 nm spectral windows, respectively. Calibration curves were drawn using the normalized line intensities of Pb I at wavelengths of 357.269, 363.958, and 368.319 nm versus the concentration of the added Pb. For all the adsorbates (the Pb compounds) used, the adsorption curves as a function of the adsorbate concentration in water followed the Langmuir type isotherms. The lowest limit of detection (LoD) and the slope of the linear part of the adsorption isotherm varied for various adsorbents, adsorbates, and different Pb I emission lines used. ZnO was found to be a better adsorbent than zeolite in terms of LoD and the slope of the linear part of the isotherm and hence the sensitivity of the detection. The LoD for Pb in an aqueous solution in the current LIBS experiment coupled with the adsorption technique was found to be 0.5 ppm.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications, Marcel Dekker, New York (1989).

    Google Scholar 

  2. 2.

    D. A. Cremers, F. Y. Yueh, J. P. Singh, and H. Zhang, Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, John Wiley & Sons, Ltd. (2006).

    Google Scholar 

  3. 3.

    A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy, Cambridge University Press (2006).

    Google Scholar 

  4. 4.

    A. Haider, and Z. Khan, Opt. Laser Technol., 44, No. 6, 1654–1659 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    K. Abedin, A. Haider, M. Rony, and Z. Khan, Opt. Laser Technol., 43, No. 1, 45–49 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried Jr., F. C. DeLucia, and A. W. Miziolek, Appl. Geochem., 24, No. 6, 1125–1141 (2009).

    Article  Google Scholar 

  7. 7.

    S. Morel, N. Leone, P. Adam, and J. Amouroux, Appl. Opt., 42, No. 30, 6184–6191 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    A. F. M. Y. Haider, M. H. Ullah, Z. H. Khan, F. Kabir, and K. M. Abedin, Opt. Laser Technol., 56, 299–303 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, Appl. Opt., 42, No. 30, 6205–6209 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    A. R. Boyain-Goitia, D. C. Beddows, B. C. Griffi ths, and H. H. Telle, Appl. Opt., 42, No. 30, 6119–6132 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    X. Fang, S. R. Ahmad, M. Mayo, and S. Iqbal, Laser Med. Sci., 20, Nos. 3–4, 132–137 (2005).

    Article  Google Scholar 

  12. 12.

    Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, Appl. Spectrosc., 58, No. 8, 897–909 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    A. K. Rai, F.-Y. Yueh, and J. P. Singh, Appl. Opt., 42, No. 12, 2078–2084 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    D. A. Cremers, L. J. Radziemski, and T. R. Loree, Appl. Spectrosc., 38, No. 5, 721–729 (1984).

    ADS  Article  Google Scholar 

  15. 15.

    R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, Appl. Spectrosc., 53, No. 10, 1226–1236 (1999).

    ADS  Article  Google Scholar 

  16. 16.

    G. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, Appl. Spectrosc., 51, No. 8, 1102–1105 (1997).

    ADS  Article  Google Scholar 

  17. 17.

    C. Chen, G. Niu, Q. Shi, Q. Lin, and Y. Duan, Appl. Opt., 54, No. 28, 8318–8325 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    J.-S. Huang, H.-T. Liu, and K.-C. Lin, Anal. Chim. Acta, 581, No. 2, 303–308 (2007).

    Article  Google Scholar 

  19. 19.

    C. Janzen, R. Fleige, R. Noll, H. Schwenke, W. Lahmann, J. Knoth, P. Beaven, E. Jantzen, A. Oest, and P. Koke, Spectrochim. Acta B, Atom. Spectrosc., 60, Nos. 7–8, 993–1001 (2005).

    ADS  Article  Google Scholar 

  20. 20.

    S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, Anal. Chem., 80, No. 6, 1995–2000 (2008).

    Article  Google Scholar 

  21. 21.

    D. Zhu, J. Chen, J. Lu, and X. Ni, Anal. Methods, 4, No. 3, 819–823 (2012).

    Article  Google Scholar 

  22. 22.

    R. Knopp, F. Scherbaum, and J. Kim, Fresenius' J. Anal. Chem., 355, No. 1, 16–20 (1996).

    Article  Google Scholar 

  23. 23.

    Z. Chen, H. Li, M. Liu, and R. Li, Spectrochim. Acta B, Atom. Spectrosc., 63, No. 1, 64–68 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Q. Lin, Z. Wei, M. Xu, S. Wang, G. Niu, K. Liu, Y. Duan, and J. Yang, RSC Adv., 4, No. 28, 14392–14399 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Z. Chen, H. Li, F. Zhao, and R. Li, J. Anal. Atom. Spectrom., 23, No. 6, 871–875 (2008).

    Article  Google Scholar 

  26. 26.

    D. D. Pace, C. D'Angelo, D. Bertuccelli, and G. Bertuccelli, Spectrochim. Acta B, Atom. Spectrosc., 61, No. 8, 929–933 (2006).

    ADS  Article  Google Scholar 

  27. 27.

    X. Liu, Q. Lin, Y. Tian, W. Liao, T. Yang, C. Qian, T. Zhang, and Y. Duan, J. Anal. Atom. Spectrom., 35, No. 1, 188–197 (2020).

    Article  Google Scholar 

  28. 28.

    H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, J. Anal. Atom. Spectrom., 24, No. 10, 1421–1428 (2009).

    Article  Google Scholar 

  29. 29.

    S. Ma, Y. Tang, Y. Ma, Y. Chu, F. Chen, Z. Hu, Z. Zhu, L. Guo, X. Zeng, and Y. Lu, Opt. Express, 27, No. 10, 15091–15099 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health.

  31. 31.

    http://www.epa.gov/OGWDW/standard.

  32. 32.

    A. F. M. Y. Haider, M. K. Ira, Z. Khan, and K. Abedin, J. Anal. Atom. Spectrom., 29, No. 8, 1385–1392 (2014).

    Article  Google Scholar 

  33. 33.

    A. F. M. Y. Haider, B. Rahman, Z. H. Khan, and K. M. Abedin, Environ. Eng. Sci., 32, No. 4, 284–291 (2015).

    Article  Google Scholar 

  34. 34.

    J. Wei, T. Zhang, J. Dong, L. Sheng, H. Tang, X. Yang, and H. Li, Chem. Res. Chin. Univ., 31, No. 6, 909–913 (2015).

    Article  Google Scholar 

  35. 35.

    https://www.physics.nist.gov/PhysRefData/ASD/lines_form.html.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. H. Khan.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, p. 1020, November–December, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haider, A.F.M.Y., Parvin, M., Khan, Z.H. et al. Highly Sensitive Detection of Lead in Aqueous Solution using Laser-Induced Breakdown Spectroscopy Coupled with Adsorption Technique. J Appl Spectrosc 87, 1163–1170 (2021). https://doi.org/10.1007/s10812-021-01125-3

Download citation

Keywords

  • laser-induced breakdown spectroscopy
  • adsorbent
  • ZnO
  • zeolite
  • lead