Skip to main content
Log in

Discrimination of Brands of Strong Aroma Type Liquors Using Synchronous Fluorescence Spectroscopy and Chemometrics Methods

  • Published:
Journal of Applied Spectroscopy Aims and scope

The application of synchronous fluorescence spectroscopy combined with chemometrics using pretreated spectra was explored to develop a rapid, low-cost, and nondestructive method for discriminating between brands of different strong aroma type liquors. Principal component analysis, partial least square discriminant analysis, support vector machine, and back-propagation artificial neural network techniques were used to classify and predict the brands of liquor samples. Compared with the other models, the SVM model achieved the best results, with an identification rate of 100% for the calibration set, and 96.67% for the prediction set. The overall results showed that synchronous fluorescence spectroscopy with an efficient chemometrics method can be used successfully to identify different brands of liquor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Fan and M. C. Qian, J. Agric. Food Chem., 54, 2695–2704 (2006).

    Article  Google Scholar 

  2. Y. Xu, D. Wang, W. Fan, X. Mu, and J. Chen., Adv. Biochem. Eng. Biotechnol., 122, 189–233 (2010).

    Google Scholar 

  3. Y. Ma, D. Huo, H. Qin, C. Shen, P. Yang, and C. Hou, J. Appl. Spectrosc., 84, 361–368 (2017).

    Google Scholar 

  4. P. Cheng, W. Fan, and Y. Xu, Food Res. Int., 54, 1753–1760 (2013).

    Article  Google Scholar 

  5. P. Cheng, W. Fan, and Y. Xu, Food Control, 35, 153–158 (2014).

    Article  Google Scholar 

  6. W. Fan and M.C. Qian, J. Agric. Food Chem., 53, 7931–7938 (2005).

    Article  Google Scholar 

  7. P. Wang, Z. Li, T. Qi, X. Li, and S. Pan, Food Chem., 169, 230–240 (2015).

    Article  Google Scholar 

  8. H. Qin, D. Huo, L. Zhang, L. Yang, S. Zhang, M. Yang, C. Shen, and C. Hou, Food Res. Int., 45, 45–51 (2012).

    Article  Google Scholar 

  9. M. Liu, X. Han, K. Tu, L. Pan, J. Tu, L. Tang, P. Liu, G. Zhan, Q. Zhong, and Z. Xiong, Food Control, 26, 564–570 (2012).

    Article  Google Scholar 

  10. Q. Zhang, C. Xie, S. Zhang, A. Wang, B. Zhu, L. Wang, and Z. Yang, Sens. Actuators B: Chem., 110, 370–376 (2005).

    Article  Google Scholar 

  11. Z. Li, P. Wang, C. Huang, H. Shang, S. Pan, and X. Li, Food Anal. Methods, 7, 1337–1344 (2014).

    Article  Google Scholar 

  12. V. Uríčková and J. Sádecká, Spectrochim. Acta, A, 148, 131–137 (2015).

    Article  ADS  Google Scholar 

  13. D. Dong, W. Zheng, W. Wang, X. Zhao, L. Jiao, and C. Zhao, Food Chem., 155, 45–49 (2014).

    Article  Google Scholar 

  14. H. Qiao, W. Zhang, and W. Wang, J. Biosci. Bioeng., 115, 405–411 (2013).

    Article  Google Scholar 

  15. Y. Wan, F. Pan, and M. Shen, Spectrochim. Acta, A, 96, 605–610 (2012).

    Article  ADS  Google Scholar 

  16. D. Patra and A. K. Mishra, Trends Anal. Chem., 21, 787–798(2002).

    Article  Google Scholar 

  17. F. Cui, Q. Zhang, X. Yao, H. Luo, Y. Yang, L. Qin, G. Qu, and Y. Lu, Pestic. Biochem. Phys., 90, 126–134 (2008).

    Article  Google Scholar 

  18. J. Sádecká, J. Tóthová, and P. Májek, Food Chem., 117, 491–498 (2009).

    Article  Google Scholar 

  19. J. Sádecká, V. Uríčková, K. Hroboňová, and P. Májek, Food Anal. Methods, 8, 58–69 (2015).

    Article  Google Scholar 

  20. M. Tomková, J. Sádecká, and K. Hroboňová, Food Anal. Methods, 8, 1258–1267 (2015).

    Article  Google Scholar 

  21. J. Sádecká, M. Jakubíková, P. Májek, and A. Kleinová, Food Chem., 196, 783–790 (2016).

    Article  Google Scholar 

  22. J. Tan, R. Li, and Z. Jiang, F ood Chem., 184, 30–36 (2015).

    Article  Google Scholar 

  23. H. Hotelling, J. Educ. Psychol., 24, 417–520 (1933).

    Article  Google Scholar 

  24. W. Li, L. Bagnol, M. Berman, R. A. Chiarella, and M. Gerber, Int. J. Pharm., 380, 49–54 (2009).

    Article  Google Scholar 

  25. P. Geladi and B. Kowalski, Ana l. Chim. Acta, 185, 1–17 (1986).

    Article  Google Scholar 

  26. M. Barker and W. Rayens, J. Ch emometr., 17, 166–173 (2003).

    Google Scholar 

  27. C. Cortes and V. Vapnik, Mach. Learn., 20, 273–297 (1995).

    Google Scholar 

  28. U. Thissen, M. Pepers, B. Üstün, W. J. Melssen, and L. M. C. Buydens, Chemometr. Intell. Lab. Syst., 73, 169–179 (2004).

    Article  Google Scholar 

  29. S. S. Keerthi and C. Lin, Neural Comput., 15, 1667–1689 (2003).

    Article  Google Scholar 

  30. R. H. Nielsen, Proc. Int. Joint Conf. Neural Networks, IEEE Press, 593–605 (1989).

  31. J. J. More, Lect. Notes Math., 630, 105–116 (1978).

    Article  Google Scholar 

  32. Y. Liu, X. Luo, Z. Shen, J. Lu, and X. Ni, Opt. Rev., 13, 303–307 (2006).

    Article  Google Scholar 

  33. S. Wagner, K. Scholz, M. Donegan , L. Burton, J. Wingate, and W. Volkel, Anal. Chem., 78, 1296–1305 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-W. Zhu.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 6, pp. 978–984, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, ZW., Chen, GQ., Wu, YM. et al. Discrimination of Brands of Strong Aroma Type Liquors Using Synchronous Fluorescence Spectroscopy and Chemometrics Methods. J Appl Spectrosc 85, 1101–1106 (2019). https://doi.org/10.1007/s10812-019-00765-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00765-w

Keywords

Navigation