Skip to main content
Log in

Determination of Bisphenol A by Synchronous Fluorimetry Using Procaine Hydrochloride as Self-Quenching Fluorescence Probe

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new synchronous fluorimetric method for the analysis of bisphenol A has been developed based on procaine hydrochloride as a self-quenching fluorescence probe. In acidic solution, procaine hydrochloride could be diazotized with sodium nitrite; then the diazotized product could react with bisphenol A in NH3–NH4Cl buffer and produce the quenching of fluorescence of diazotized procaine hydrochloride-NH3–NH4Cl solution. Based on this observation, an inhibitory fluorimetric method is reported for the determination of trace bisphenol A. The synchronous spectral peaks of the reaction system are at 225 and 270 nm. The spectra of the two peaks can be separated, and bisphenol A can be determined directly. The possible mechanism of the reaction has also been discussed. Under optional conditions, bisphenol A can be determined over the concentration range of 0.10 to 1.4 μg/mL with a correlation coefficient of 0.99. The detection limit is 0.04 μg/mL at a signal-to-noise ratio of 3. The relative standard deviation (RSD) for 11 repetitive determinations of 1.0 μg/mL b isphenol A is 0.32%. The utility of this method was demonstrated by determining bisphenol A in hot water in contact with commercially available table-water bottle samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. B. P. Vidal, G. A. Ibañez, and G. M. Escandar, Talanta, 143, 162–168 (2015).

    Article  Google Scholar 

  2. Y. Zhu, C. Zhou, X. Yan, Y. Yan, and Q. Wang, Anal. Chim. Acta, 883, 81–89 (2015).

    Article  Google Scholar 

  3. A. Kim, C. R. Li, C. F. Jin, K. W. Lee, S. H. Lee, K. J. Shon, N. G. Park, D. K. Kim, S. W. Kang, Y. B. Shim, and J. S. Park, Chemosphere, 68, 1204–1209 (2007).

    Article  ADS  Google Scholar 

  4. S. Rodriguez-Mozaz, M. L. de Alda, and D. Barceló, Water Res., 39, 5071–5079 (2005).

    Article  Google Scholar 

  5. Y. Watabe, T. Kondo, M. Morita, N. Tanaka, J. Haginaka, and K. Hosoya, J. Chromatogr. A, 1032, 45–49 (2004).

    Article  Google Scholar 

  6. J. Poskrobko, M. Dejnega, and M. Kiedik, J. Chromatogr. A, 883, 291–297 (2000).

    Article  Google Scholar 

  7. Y. Sun, M. Wada, O. Al-Dirbashi, N. Kuroda, H. Nakazawa, and K. Nakashima, J. Chromatogr. B, 749, 49–56 (2000).

    Article  Google Scholar 

  8. M. Rezaee, Y. Yamini, S. Shariati, A. Esrafili, and M. Shamsipur, J. Chromatogr. A, 1216, 1511–1514 (2009).

    Article  Google Scholar 

  9. M. Kawaguchi, R. Ito, N. Endo, N. Okanouchi, N. Sakui, K. Saito, and H. Nakazawa, J. Chromatogr. A, 1110, 1–5 (2006).

    Article  Google Scholar 

  10. S. Wang, X. Wei, L. Du, and H. Zhuang, J. Lumin., 20, 46–50 (2005).

    Article  Google Scholar 

  11. K. K. Reza, M. A. Ali, S. Srivastava, V. V. Agrawal, and A. M. Biradar, Biosens. Bioelectron., 74, 644–651 (2015).

    Article  Google Scholar 

  12. L. A. Goulart, F. C. de Moraes, and L. H. Mascaro, Mater. Sci. Eng. C, 58, 768–773 (2016).

    Article  Google Scholar 

  13. E. Mazzotta, C. Malitesta, and E. Margapoti, Anal. Bioanal. Chem., 405, 3587–3592 (2013).

    Article  Google Scholar 

  14. T. Ndlovu, O. A. Arotiba, S. Sampath, R. W. Krause, and B. B. Mamba, Sensors, 12, 11601–11611 (2012).

    Article  Google Scholar 

  15. Y. F. Zhuang, J. T. Zhang, and G. P. Cao, J. Chin. Chem. Soc., 55, 994–1000 (2008).

    Article  ADS  Google Scholar 

  16. Y. F. Zhuang, M. Zhou, J. Gu, and X. M. Li, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 122, 153–157 (2014).

    Article  ADS  Google Scholar 

  17. Y. Li, J. Y. Xu, L. K. Wang, Y. J. Huang, J. J. Guo, X. Y. Cao, F. Shen, Y. Luo, and C. Y. Sun. Sens. Actuators B: Chem., 222, 815–822 (2016).

    Article  Google Scholar 

  18. X. Wang, H. L. Zeng, Y. L. Wei, and J. M. Lin, Sens. Actuators B: Chem., 114, 565–572 (2006).

    Article  Google Scholar 

  19. M. Del Olmo, A. Zafra, A. B. Jurado, and J. L. Vilchez, Talanta, 50, 1141–1148 (2000).

    Article  Google Scholar 

  20. J. Fan, H. Q. Guo, G. G. Liu, and P. G. Peng, Anal. Chim. Acta, 585, 134–138 (2007).

    Article  Google Scholar 

  21. O. M. Zharkova, Y. P. Morozova, and V. Y. Artyukhov, Russ. Phys. J., 48, 17–24 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Zhuang.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 6, pp. 971–977, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Y.F., Cao, G.P., Mao, J.Y. et al. Determination of Bisphenol A by Synchronous Fluorimetry Using Procaine Hydrochloride as Self-Quenching Fluorescence Probe. J Appl Spectrosc 85, 1094–1100 (2019). https://doi.org/10.1007/s10812-019-00764-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00764-x

Keywords

Navigation