Skip to main content
Log in

Technique for Inverting Transmission Spectra to Measure Freon Concentration

  • Published:
Journal of Applied Spectroscopy Aims and scope

We propose an approach to selecting the optimal parameters for solving the inverse problem for determining the total freon content (TC) from ground-based spectrometric measurements of solar radiation. The approach was developed for measurements at the St. Petersburg NDACC station using a Bruker FS125HR Fourier-transform interferometer and implemented as applied to measurements of the total content of the hydrochlorofluorocarbon R-22 (HCF2Cl). Based on the optimal set of parameters obtained, we retrieved the total R-22 content above the St. Petersburg station in the period 2009–2018 and obtained estimates of the measurement uncertainties: average systematic uncertainty 4.8%, random uncertainty 3.7% over the entire observational period. A preliminary estimate of the trend is 2.64 ± 0.22% per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. J. Molina and F. S. Rowland, Nature, 249, 810–812 (1974).

    Article  ADS  Google Scholar 

  2. M. Ko, P. Newman, S. Reimann, S. Strahan, R. Plumb, R. Stolarski, J. Burkholder, W. Mellouki, A. Engel, and E. Atlas, Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species, SPARC Report No. 6, WCRP-15/2013 (2013).

  3. L. Hoffmann and M. Riese, Adv. Space Res., 33, 1068–1072 (2004).

    Article  ADS  Google Scholar 

  4. A. T. Brown, M. P. Chipperfield, C. Boone, C. Wilson, K. A. Walker, and P. F. Bernath, J. Quant. Spectrosc. Radiat. Transf., 112, 2552–2566 (2011).

    Article  ADS  Google Scholar 

  5. D. Cunnold, R. Weiss, R. Prinn, D. Hartley, P. Simmonds, P. Fraser, B. Miller, F. Alyea, and L. Porter, J. Geophys. Res.: Atm., 102, 1259–1269 (1997).

    Article  ADS  Google Scholar 

  6. B. Dunse, L. Steele, S. Wilson, P. Fraser, and P. Krummel, Atmos. Environ., 39, 6334–6344 (2005).

    Article  ADS  Google Scholar 

  7. F. Khosrawi, R. Müller, H. Irie, A. Engel, G. Toon, B. Sen, S. Aoki, T. Nakazawa, W. Traub, and K. J. Jucks, Geophys. Res.: Atm., 109, D06311 (2004).

    ADS  Google Scholar 

  8. L. Hoffmann, M. Kaufmann, R. Spang, R. Müller, J. J. Remedios, D. P. Moore, C. M. Volk, T. von Clarmann, and M. Riese, Atm. Chem. Phys., No. 8, 3671–3688 (2008).

  9. E. Mahieu, P. Duchatelet, P. Demoulin, K. A. Walker, E. Dupuy, L. Froidevaux, C. Randall, V. Catoire, K. Strong, C. D. Boone, P. F. Bernath, J.-F. Blavier, T. Blumenstock, M. Coffey, M. De Mazière, D. Griffith, J. Hannigan, F. Hase, N. Jones, K. W. Jucks, A. Kagawa, Y. Kasai, Y. Mebarki, S. Mikuteit, R. Nassar, J. Notholt, C. P. Rinsland, C. Robert, O. Schrems, C. Senten, D. Smale, J. Taylor, C. Tétard, G. C. Toon, T. Warneke, S. W. Wood, R. Zander, and C. Servais, Atm. Chem. Phys., No. 8, 6199–6221 (2008).

  10. J. Notholt, Geophys. Res. Lett., 21, 2385–2388 (1994).

    Article  ADS  Google Scholar 

  11. R. Zander, E. Mahieu, P. Demoulin, P. Duchatelet, C. Servais, G. Roland, L. Delbouille, M. De Mazière, and C. P. Rinsland, Environ. Sci., No. 2, 295–303 (2005).

  12. E. Mahieu, C. P. Rinsland, T. Gardiner, R. Zander, P. Demoulin, M. P. Chipperfield, R. Ruhnke, L. S. Chiou, and M. De Maziére, Geophys. Res. Abstr., 12, EGU2010-2420-3 (2010), https://meetingorganizer.copernicus.org/EGU2013/EGU2013-5690.pdf.

    Google Scholar 

  13. E. Mahieu, S. O’Doherty, S. Reimann, M. Vollmer, W. Bader, B. Bovy, B. Lejeune, P. Demoulin, G. Roland, and C. Servais, Geophys. Res. Abstr., 15, EGU2013-1185-1 (2013), https://meetingorganizer.copernicus.org/EGU2010/EGU2010-2420-3.pdf.

    Google Scholar 

  14. E. Mahieu, B. Lejeune, B. Bovy, C. Servais, G. C. Toon, P. F. Bernath, C. D. Boone, K. A. Walker, S. Reimann, and M. K. Vollmer, J. Quant. Spectrosc. Radiat. Transf., 186, 96–105 (2017).

    Article  ADS  Google Scholar 

  15. M. Zhou, C. Vigouroux, B. Langerock, P. Wang, G. Dutton, C. Hermans, N. Kumps, J.-M. Metzger, G. Toon, and M. De Mazière, Atm. Meas. Technol., 9, 5621–5636 (2016).

    Article  Google Scholar 

  16. I. S. Yagovkina, A. V. Polyakov, A. V. Poberovskii, and Yu. M. Timofeev, Izv. RAN, FAO, 47, No. 2, 204–207 (2011).

    Google Scholar 

  17. A. V. Polyakov, Yu. M. Timofeev, Ya. A. Virolainen, M. V. Makarova, A. V. Poberovskii, and H. Imhasin, Izv. RAN, FAO, 54, No. 5, 575–583 (2018).

  18. Yu. Timofeyev, Ya. Virolainen, M. Makarova, A. Poberovsky, A. Polyakov, D. Ionov, S. Osipov, and H. Imhasin, J. Mol. Spectrosc., 323, 2–14 (2016).

    Article  ADS  Google Scholar 

  19. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., River Edge (2000).

  20. V. F. Turchin, V. P. Kozlov, and M. S. Malkevich, Usp. Fiz. Nauk, 102, 345–386 (1970).

    Article  Google Scholar 

  21. M. Park, W. J. Randel, D. E. Kinnison, L. K. Emmons, P. F. Bernath, K. A. Walker, C. D. Boone, and M. J. Livesey, Geophys. Res.: Atm., 118, No. 4, 1964–1980 (2013).

    ADS  Google Scholar 

  22. S. Montzka, B. Hall, and J. Elkins, Geophys. Res. Lett., 36, L03804 (2009).

    Article  ADS  Google Scholar 

  23. J. Elkins, T. Thompson, T. Swanson, J. Butler, B. Hall, S. Cummings, D. Fisher, and A. Raffo, Nature, 364, 780–783 (1993).

    Article  ADS  Google Scholar 

  24. S. Montzka, J. H. Butler, R. C. Myers, T. M. Thompson, T. H. Swanson, A. D. Clarke, L. T. Lock, and J. W. Elkins, Science, 272, 1318–1322 (1996).

    Article  ADS  Google Scholar 

  25. S. Walker, R. Weiss, and P. Salameh, J. Geophys. Res.: Oceans, 105, 14285–14296 (2000).

    Article  ADS  Google Scholar 

  26. Y. A. Virolainen, Y. M. Timofeyev, V. S. Kostsov, D. V. Ionov, V. V. Kalinnikov, M. V. Makarova, A. V. Poberovsky, N. A. Zaitsev, H. H. Imhasin, A. V. Polyakov, M. Schneider, F. Hase, S. Barthlott, and T. Blumenstock, Atm. Meas. Technol., No. 10, 4521–4536 (2017).

  27. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Royr, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, J. Quant. Spectrosc. Radiat. Transf., 130, 4–50 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polyakov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 6, pp. 962–970, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, A.V., Virolainen, Y.A. & Makarova, M.V. Technique for Inverting Transmission Spectra to Measure Freon Concentration. J Appl Spectrosc 85, 1085–1093 (2019). https://doi.org/10.1007/s10812-019-00763-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00763-y

Keywords

Navigation