Skip to main content
Log in

Spectral and Luminescent Properties and Morphology of Self-Assembled Nanostructures of an Indotricarbocyanine Dye

  • Published:
Journal of Applied Spectroscopy Aims and scope

Spectral and luminescent properties of an indotricarbocyanine dye are studied in solutions and after deposition on quartz or silicon substrates. It is found that the dye molecules self-assemble in aqueous EtOH solutions to form H*-aggregates. The absorption band of the H*-aggregates shows a hypsochromic shift of 192 nm (5291 cm–1) relative to the absorption maximum of dye monomers (706 nm) and has a full width at half maximum of 21 nm (797 cm–1). The morphology of the H*-aggregates of the indotricarbocyanine dye is studied for the first time. It is found that the aggregates are rod-like species ~10 nm high, 100 nm wide, and several micrometers long. H-aggregates with a fluorescence maximum at 560 nm and Stokes shift of 325 cm–1 in addition to non-fluorescent H*-aggregates form in aqueous EtOH solutions and are nanoparticles with a height of 1–3 nm and lateral dimensions of ~100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. H. Herz, Adv. Colloid Interface Sci., 8, No. 3, 237–298 (1977).

    Article  Google Scholar 

  2. R. L. Parton and J. R. Lenhard, J. Org. Chem., 55, No. 3, 49–57 (1990).

    Article  Google Scholar 

  3. F. Wuerthner, R. Wortmann, and K. Meerholz, Chem. Phys. Chem., 3, No. 1, 17–31 (2002).

    Article  Google Scholar 

  4. O. I. Tolmachev, N. V. Pilipchuk, O. D. Kachkovsky, Yu. L. Slominski, V. Ya. Gayvoronsky, E. V. Shepelyavyy, S. V. Yakunin, and M. S. Brodyn, Dyes Pigm., 74, No. 1, 195–201 (2007).

    Article  Google Scholar 

  5. S. Barlow, J. L. Bredas, Yu. A. Getmanenko, R. L. Gieseking, J. M. Hales, H. Kim, S. R. Marder, J. W. Perry, C. Risko, and Y. Zhang, Mater. Horiz., 1, No. 6, 577–581 (2014).

    Article  Google Scholar 

  6. Z. Sheng, D. Hu, M. Xue, M. He, P. Gong, and L. Cai, Nano-Micro Lett., 5, No. 3, 145–150 (2013).

    Article  Google Scholar 

  7. K. Sano, T. Nakajima, T. Ali, D. W. Bartlett, A. M. Wu, I. Kim, C. H. Paik, P. L. Choyke, and H. Kobayashi, J. Biomed. Opt., 18, No. 10, 103041–1013046 (2013).

    Article  Google Scholar 

  8. R. Watanabe, K. Sato, H. Hanaoka, T. Harada, T. Nakajima, I. Kim, C. H. Paik, A. M. Wu, P. L. Choyke, and H. Kobayashi, ACS Med. Chem. Lett., 5, No. 4, 411–415 (2014).

    Article  Google Scholar 

  9. A. Yuan, J. Wu, X. Tang, L. Zhao, F. Xu, and Y. Hu, J. Pharm. Sci., 102, No. 1, 6–28 (2013),

    Article  Google Scholar 

  10. X. Yi, F. Wang, W. Qin, X. Yang, and J. Yuan, Int. J. Nanomed., 9, 1347–1365 (2014).

    Article  Google Scholar 

  11. A. A. Lugovski, M. P. Samtsov, K. N. Kaplevsky, D. Tarasau, E. S. Voropay, P. T. Petrov, and Yu. P. Istomin, J. Photochem. Photobiol., A, 316, 31–36 (2016).

    Article  Google Scholar 

  12. R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, and A. S. Waggoner, Bioconjugate Chem., 4, No. 2, 105–111 (1993).

    Article  Google Scholar 

  13. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera, Chem. Rev., 100, No. 6, 1973–2012 (2004),

    Article  Google Scholar 

  14. D. R. Dietze and R. A. Mathies, J. Phys. Chem. C, 119, No. 18, 9980–9987 (2015).

    Article  Google Scholar 

  15. A. A. Ishchenko, Russ. Chem. Rev., 60, No. 8, 865–884 (1991).

    Article  ADS  Google Scholar 

  16. V. I. Yuzhakov, Russ. Chem. Rev., 61, No. 6, 613–628 (1992).

    Article  ADS  Google Scholar 

  17. L. Daehne and E. Biller, Adv. Mater., 10, No. 3, 241–245 (1998).

    Article  Google Scholar 

  18. I. A. Struganova, H. Lim, and S. A. Morgan, J. Phys. Chem. B, 106, No. 42, 11047–11050 (2002).

    Article  Google Scholar 

  19. A. K. Chibisov, H. Goerner, and T. D. Slavnova, Chem. Phys. Lett., 309, No. 1, 240–245 (2004).

    Article  ADS  Google Scholar 

  20. C. Didraga, A. Pugzlys, P. R. Hania, H. von Berlepsch, K. Duppen, and J. Knoester, J. Phys. Chem. B, 108, 14976–14985 (2004).

    Article  Google Scholar 

  21. A. Pugzlys, R. Augulis, P. H. M. van Loosdrecht, C. Didraga, V. A. Malyshev, and J. Knoester, J. Phys. Chem. B, 110, No. 41, 20268–20276 (2006).

    Article  Google Scholar 

  22. H. von Berlepsch, S. Kirstein, R. Hania, A. Pugzlys, and C. Boettcher, J. Phys. Chem. B, 11, No. 7, 1701–1711 (2007).

    Article  Google Scholar 

  23. B. I. Shapiro, E. A. Belonozhkina, and V. A. Kuz′min, Nanotechnol. Russ., 4, Nos. 1–2, 38–44 (2009).

  24. F. C. Spano, J. Am. Chem. Soc., 131, No. 12, 4267–4278 (2009).

    Article  Google Scholar 

  25. D. M. Eisele, J. Knoester, S. Kirstein, J. P. Rabe, and D. A. Vanden Bout, Nat. Nanotechnol., 4, No. 10, 658–663 (2009).

    Article  ADS  Google Scholar 

  26. S. J. Khouri and V. Buss, J. Solution Chem., 39, No. 1, 121–130 (2010).

    Article  Google Scholar 

  27. F. C. Spano, Acc. Chem. Res., 43, No. 3, 429–439 (2010).

    Article  Google Scholar 

  28. F. Wuerthner, T. E. Kaiser, and C. R. Saha-Moeller, Angew. Chem., Int. Ed., 50, No. 15, 3376–3410 (2011).

    Article  Google Scholar 

  29. D. M. Eisele, C. W. Cone, E. A. Bloemsma, S. M. Vlaming, C. G. F. van der Kwaak, R. J. Silbey, M. G. Bawendi, J. Knoester, J. P. Rabe, and D. A. Vanden Bout, Nat. Chem., 4, No. 8, 655–662 (2012).

    Article  Google Scholar 

  30. H. von Berlepsch and C. Boettcher, Langmuir, 29, No. 16, 4948–4958 (2013).

    Article  Google Scholar 

  31. S. Chakraborty, P. Debnath, D. Dey, D. Bhattacharjee, and S. A. Hussain, J. Photochem. Photobiol., A, 93, 57–64 (2014).

  32. K. A. Clark, E. L. Krueger, and D. A. Vanden Bout, J. Phys. Chem. C, 118, No. 42, 24325–24334 (2014).

    Article  Google Scholar 

  33. N. Sato, T. Fujimura, T. Shimada, T. Tani, and S. Takagi, Tetrahedron Lett., 56, No. 22, 2902–2905 (2015).

    Article  Google Scholar 

  34. J. Megow, M. I. S. Roehr, M. Schmidt am Busch, T. Renger, R. Mitric, S. Kirstein, J. P. Rabe, and V. May, Phys. Chem. Chem. Phys., 17, No. 10, 6741–6747 (2015).

    Article  Google Scholar 

  35. J. R. Caram, S. Doria, D. M. Eisele, F. S. Freyria, T. S. Sinclair, P. Rebentrost, S. Lloyd, and M. G. Bawendi, Nano Lett., 16, No. 11, 6808–6815 (2016).

    Article  ADS  Google Scholar 

  36. F. Milota, V. I. Prokhorenko, T. Mancal, H. von Berlepsch, O. Bixner, H. F. Kauffmann, and J. Hauer, J. Phys. Chem. A, 117, No. 29, 6007–6014 (2013).

    Article  Google Scholar 

  37. H. von Berlepsch and C. Boettcher, J. Phys. Chem. B, 119, No. 35, 11900–11909 (2015).

    Article  Google Scholar 

  38. C. Koenigstein, M. N. Spallart, and R. Bauer, Electrochim. Acta, 43, Nos. 16–17, 2435–2445 (1998).

  39. M. Kawasaki and T. Sato, J. Phys. Chem. B, 105, No. 4, 796–803 (2001).

    Article  Google Scholar 

  40. M. Kawasaki, D. Yoshidome, T. Sato, and M. Iwasaki, J. Electroanal. Chem., 543, No. 1, 1–11 (2003).

    Article  Google Scholar 

  41. J. L. Lyon, D. M. Eisele, S. Kirstein, J. P. Rabe, D. A. Vanden Bout, and K. J. Stevenson, J. Phys. Chem. C, 112, No. 4, 1260–1268 (2008).

    Article  Google Scholar 

  42. J. L. Lyon, D. M. Eisele, S. Kirstein, J. P. Rabe, D. A. Vanden Bout, and K. J. Stevenson, ECS Trans., 16, No. 28, 77–84 (2009).

    Article  Google Scholar 

  43. C. W. Cone, S. Cho, J. L. Lyon, D. M. Eisele, J. P. Rabe, K. J. Stevenson, P. J. Rossky, and D. A. Vanden Bout, J. Phys. Chem. C, 115, No. 30, 14978–14987 (2011).

    Article  Google Scholar 

  44. K. Takazawa, Y. Kitahama, and Y. Kimura, Chem. Commun., 20, 2272–2273 (2004).

    Article  Google Scholar 

  45. K. Takazawa, Y. Kitahama, Y. Kimura, and G. Kido, Nano Lett., 5, No. 7, 1293–1296 (2005).

    Article  ADS  Google Scholar 

  46. B. J. Walker, A. Dorn, V. Bulovic, and M. G. Bawendi, Nano Lett., 11, No. 7, 2655–2659 (2011).

    Article  ADS  Google Scholar 

  47. Y. Qiao, F. Polzer, H. Kirmse, E. Steeg, S. Kirstein, and J. P. Rabe, J. Mater. Chem. C, 2, No. 43, 9141–9148 (2014).

    Article  Google Scholar 

  48. Y. Qiao, F. Polzer, H. Kirmse, E. Steeg, S. Kuehn, S. Friede, S. Kirstein, and J. P. Rabe, ACS Nano, 9, No. 2, 1552–1560 (2015).

    Article  Google Scholar 

  49. Y. Qiao, F. Polzer, H. Kirmse, S. Kirstein, and J. P. Rabe, Chem. Commun., 51, No. 60, 11980–11982 (2015).

    Article  Google Scholar 

  50. A. Yoshida, N. Uchida, and K. Noritsugu, Langmuir, 25, No. 19, 11802–11807 (2009).

    Article  Google Scholar 

  51. K. E. Achyuthan, A. M. Achyuthan, S. M. Brozik, S. M. Dirk, T. R. Lujan, J. M. Romero, and J. C. Harper, Anal. Sci., 28, No. 5, 433–438 (2012).

    Article  Google Scholar 

  52. N. A. Toropov, P. S. Parfenov, and T. A. Vartanyan, J. Phys. Chem. C, 118, No. 31, 18010–18014 (2014).

    Article  Google Scholar 

  53. R. D. Jansen-van Vuuren, P. C. Deakin, S. Olsen, and P. L. Burn, Dyes Pigm., 101, 1–8 (2014).

    Article  Google Scholar 

  54. M. Kawasaki and S. Aoyama, Chem. Commun., 8, 988–989 (2004).

    Article  Google Scholar 

  55. X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan, and H. Tian, Tetrahedron, 64, No. 2, 345–350 (2008).

    Article  Google Scholar 

  56. A. N. Jordan, S. Das, N. Siraj, S.L. de Rooy, M. Li, B. El-Zahab, L. Chandler, G. A. Baker, and I. M. Warner, Nanoscale, 4, No. 16, 5031–5038 (2012).

    Article  ADS  Google Scholar 

  57. P. K. D. Duleepa Pitigala, M. M. Henary, E. A. Owens, A. G. UnilPerera, and K. Tennakone, J. Photochem. Photobiol. A, 325, 39–44 (2016).

    Article  Google Scholar 

  58. S. Kirstein and S. Daehne, Int. J. Photoenergy, 2006, 203631–203632 (2007).

    Google Scholar 

  59. D. M. Eisele, H. von Berlepsch, C. Boettcher, K. J. Stevenson, D. A. Vanden Bout, S. Kirstein, and J. P. Rabe, J. Am. Chem. Soc., 132, No. 7, 2104–2105 (2010).

    Article  Google Scholar 

  60. L. I. Markova, V. L. Malinovskii, L. D. Patsenker, and R. Haener, Chem. Commun., 49, No. 46, 5298–5300 (2013).

    Article  Google Scholar 

  61. R. L. Gieseking, S. Mukhopadhyay, C. Risko, S. R. Marder, and J. L. Bredas, Adv. Mater., 26, No. 1, 68–84 (2014).

    Article  Google Scholar 

  62. J. Yuen-Zhou, D. H. Arias, D. M. Eisele, C. P. Steiner, J. J. Krich, M. G. Bawendi, K. A. Nelson, and A. Aspuru-Guzik, ACS Nano, 8, No. 6, 5527–5534 (2014).

    Article  Google Scholar 

  63. E. Steeg, F. Polzer, H. Kirmse, Y. Qiao, J. P. Rabe, and S. Kirstein, J. Colloid Interface Sci., 472, 187–194 (2016).

    Article  ADS  Google Scholar 

  64. E. E. Jelley, Nature, 138, No. 3502, 1009–1010 (1936).

    Article  ADS  Google Scholar 

  65. E. E. Jelley, Nature, 139, No. 3519, 631–632 (1937).

    Article  ADS  Google Scholar 

  66. G. Scheibe, Angew. Chem., 50, No. 11, 212–219 (1937).

    Article  Google Scholar 

  67. M. Kasha, H. R. Rawls, and M. Ashraf El-Bayoumi, Pure Appl. Chem., 11, Nos. 3–4, 371–392 (1965).

    Article  Google Scholar 

  68. H. Asanuma, K. Shirasuka, T. Takarada, H. Kashida, and M. Komiyama, J. Am. Chem. Soc., 125, No. 8, 2217–2223 (2003).

    Article  Google Scholar 

  69. J. Clark, J. F. Chang, F. C. Spano, R. H. Friend, and C. Silva, Appl. Phys. Lett., 94, No. 16, 1633061–1633063 (2009).

    Article  Google Scholar 

  70. U. Roesch, S. Yao, R. Wortmann, and F. Wuerthner, Angew. Chem., Int. Ed., 45, No. 42, 7026–7030 (2006).

    Article  Google Scholar 

  71. Q. Fang, F. Wang, H. Zhao, X. Liu, R. Tu, D. Wang, and Z. Zhang, J. Phys. Chem. B, 112, No. 10, 2837–2841 (2008).

    Article  Google Scholar 

  72. N. Ryu, Y. Okazaki, E. Pouget, M. Takafuji, S. Nagaoka, H. Ihara, and R. Oda, Chem. Commun., 53, No. 63, 8870–8873 (2017).

    Article  Google Scholar 

  73. A. V. Ruban, P. Horton, and A. J. Young, J. Photochem. Photobiol., B, 21, Nos. 2–3, 229–234 (1993).

  74. N. V. Belko, M. P. Samtsov, G. A. Gusakov, E. S. Voropay, and L. S. Lyashenko, Zh. Prikl. Spektrosk., 83, Spec. Iss. 6-16, 458–459 (2016).

  75. E. S. Emerson, M. A. Conlin, A. E. Rosenoff, K. S. Norland, H. Rodriguez, D. Chin, and G. R. Bird, J. Phys. Chem., 71, No. 8, 2396–2403 (1967).

    Article  Google Scholar 

  76. C. A. Parker, Photoluminescence of Solutions with Applications to Photochemistry and Analytical Chemistry, Elsevier, New York (1968), 544 pp. [Russian translation, Mir, Moscow (1972), pp. 210–218].

  77. V. Sundstrom and T. Gillbro, Chem. Phys., 61, 257–269 (1981).

    Article  Google Scholar 

  78. G. E. Walfaren, J. Chem. Phys., 40, No. 11, 3249–3256 (1964).

    Article  ADS  Google Scholar 

  79. V. V. Egorov and M. V. Alfi mov, Usp. Fiz. Nauk, 117, No. 10, 1033–1081 (2007).

  80. V. V. Egorov, J. Lumin., 131, No. 3, 543–547 (2011).

    Article  Google Scholar 

  81. V. V. Egorov, AIP Adv., 14, No. 7, 0771111–0771119 (2014).

    Google Scholar 

  82. V. V. Egorov, R. Soc. Open Sci., 4, No. 5, 160550-1–160550-2 (2017).

  83. E. W. Knapp, Chem. Phys., 85, No. 1, 73–82 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Belko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 6, pp. 868–878, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belko, N.V., Samtsov, M.P., Gusakov, G.A. et al. Spectral and Luminescent Properties and Morphology of Self-Assembled Nanostructures of an Indotricarbocyanine Dye. J Appl Spectrosc 85, 997–1005 (2019). https://doi.org/10.1007/s10812-019-00753-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00753-0

Keywords

Navigation