Skip to main content
Log in

Fourier Transform IR Spectroscopic Study of Nano-ZrO2 + Nano-SiO2 + Nano-H2O Systems Upon the Action of Gamma Radiation

  • Published:
Journal of Applied Spectroscopy Aims and scope

The radiation decomposition of water in a nano-ZrO2 + nano-SiO2 + H2O system at 300 K by the action of gamma radiation has been studied by Fourier transform IR spectroscopy. Water adsorption in the zirconium and silicon nanooxides is attributed to molecular and dissociative mechanisms. Active intermediates in this radiation-induced heterogeneous decomposition of water were detected including zirconium and silicon hydrides and hydroxyl groups. Variation in the ratio of ZrO2 and SiO2 nanopowders was shown to lead to change in their radiation catalytic activity compared to initial ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Miyata, K. Fuji, and Y. Kuvakova, Appl. Spectrosc., 40, No. 8, 1177 (1986).

    Article  ADS  Google Scholar 

  2. A. A. Garibov, T. N. Agaev, G. T. Imanova, S. Z. Melikova, and N. N. Gadzhieva, Khim. Vys. Énerg., 48, No. 3, 239–243 (2014).

    Google Scholar 

  3. A. A. Garibov, Kh. B. Gezaolov, and G. Z. Velibekova, Khim. Vys. Énerg., 21, No. 6, 505–510 (1987).

    Google Scholar 

  4. A. K. Pikaev, Dosimetry in Radiation Chemistry [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  5. S. Seino, R. Fujimoto, and T. A. Yamamoto, Mater. Res. Soc. Symp. Proc., 505 (1999).

  6. S. Sutoshi, T. A. Yamamoto, and R. Fujimoto, J. Nucl. Sci. Technol., 38, No. 5, 633–636 (1989).

    Google Scholar 

  7. A. Cesal, O. Hauta, and A. Macovei, Rev. Roum. Chim., 23, No. 9, 875–880 (2008).

    Google Scholar 

  8. N. G. Petrik, A. V. Alexandrov, and A. I. Vall, J. Phys. Chem. B, 105, 5935–5944 (2001).

    Article  Google Scholar 

  9. G. Ranga Rao and H. Ranjan Sahu, Bull. Mater. Sci., 23, No. 5, 349–354 (2000).

    Article  Google Scholar 

  10. A. G. Perez-Luna, A. L. Martinez-Hernandez, G. M. Barrera, and C. V. Santes, Adv. Mater. Lett., 7, No. 2, 156–162 (2016).

    Article  Google Scholar 

  11. A. A. Davydov, IR Spectroscopy in the Chemistry of Surface Oxides [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  12. Kh. B. Gezalov, A. A. Garibov, R. D. Kasumov, A. M. Gasanov, and M. M. Aliev, Khim. Vys. Énerg., 23, No. 5, 472–473 (1989).

    Google Scholar 

  13. A. N. Kharlamov, N. A. Zubareva, and E. V. Lunina, Vestn. Moskovsk. Univ. Ser. 2, Khimiya, 39, No. 1, 29–33 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Agayev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 351–354, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agayev, T.N., Gadzhieva, N.N. & Melikova, S.Z. Fourier Transform IR Spectroscopic Study of Nano-ZrO2 + Nano-SiO2 + Nano-H2O Systems Upon the Action of Gamma Radiation. J Appl Spectrosc 85, 365–368 (2018). https://doi.org/10.1007/s10812-018-0658-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0658-9

Keywords

Navigation