Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 166–177 | Cite as

Quantum Path Control of Harmonic Emission and Isolated Attosecond Pulse Generation by Using the Asymmetric Inhomogeneous Mid-Infrared Field

  • L. Q. Feng
  • W. L. Li
  • R. S. Castle

High-order harmonic generation (HHG) from the He atom driven by the asymmetric inhomogeneous mid-infrared field, produced by a metallic nanostructure, has been investigated. It is found that due to the asymmetric enhancement of the laser intensity in space, not only the harmonic cutoff can be extended, but also the single harmonic emission event with the single short quantum path contribution can be obtained. Further, by properly adding a terahertz (THz) controlling pulse, the harmonic cutoff can be further extended, showing a 1208 eV super-bandwidth with the intensity enhancement of two orders of magnitude. Finally, by properly superposing the harmonics, a series of the isolated 33 as pulses with the photon energies from 123 eV (10 nm) to 1256 eV (1 nm) can be obtained.


high-order harmonic generation quantum path control of harmonic emission attosecond pulse generation asymmetric inhomogeneous field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Krausz and M. Ivanov, Rev. Mod. Phys., 81, 163–234 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H. G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature, 446, 627–632 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    R. J. Kasumova and G. A. Safarova, J. Appl. Spectrosc., 79, 874–880 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Bui, U. I. Dashkevich, V. A. Orlovich, and I. A. Khodasevich, J. Appl. Spectrosc., 82, 578–584 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, Science, 320, 1614–1617 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    R. A. Ganeev, Opt. Spectrosc., 118, 639–654 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    P. B. Corkum, Phys. Rev. Lett., 71, 1994–1997 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Mairesse, A. D. Bohan, L. J. Frasinski, H. Merdji, L. C. Dinu, P. Monchicourt, P. Breger, M. Kovačev, R. Taïeb, B. Carré, H. G. Muller, P. Agostini, and P. Salières, Science, 302, 1540–1543 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, Nat. Photonics, 4, 875–879 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    H. Vincenti, F. Quéré, Phys. Rev. Lett., 108, 113904 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    C. M. Zhang, G. Vampa, D. M. Villeneuve, and P. B. Corkum, J. Phys. B: At. Mol. Opt. Phys., 48, 061001 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    T. J. Hammond, G. G. Brown, K. T. Kim, D.M. Villeneuve, and P. B. Corkum, Nat. Photonics, 10, 171–175 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    M. Louiy, C. L. Arnold, M. Miranda, E. W. Larsen, S. N. Bengtsson, D. Kroon, M. Kotur, D. Guénot, L. Rading, P. Rudawski, F. Brizuela, F. Campi, B. Kim, A. Jarnac, A. Houard, J. Mauritsson, P. Johnsson, A. L’Huillier, and C. M. Heyl, Optica, 2, 563–566 (2015).CrossRefGoogle Scholar
  14. 14.
    C. M. Heyl, H. Coudert-Alteirac, M. Miranda, M. Louisy, K. Kovacs, V. Tosa, E. Balogh, K. Varjú, A. L'Huillier, A. Couairon, and C. L. Arnold, Optica, 3, 75–81 (2016).Google Scholar
  15. 15.
    Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett., 98, 203901 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    P. F. Lan, P. X. Lu, W. Cao, Y. H. Li, and X. L. Wang, Phys. Rev. A, 76, 011402 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    X. Cao, S. C. Jiang, C. Yu, Y. H. Wang, L. H. Bai, and R. F. Lu, Opt. Express, 22, 26153–26161 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    T. Popmintchev, M. C. Chen, O. Cohen, M. Grisham, J. Rocca, M. Murnane, and H. Kapteyn, Opt. Lett., 33, 2128–2130 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Chou, P. C. Li, T. S. Ho, and S. I. Chu, Phys. Rev. A, 91, 063408 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    J. H. Luo, Y. Li, Z. Wang, Q. B. Zhang, and P. X. Lu, J. Phys. B: At. Mol. Opt. Phys., 46, 145602 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    L. Q. Feng and T. S. Chu, Phys. Rev. A, 84, 053853 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    J. Wu, G. T. Zhang, C. L. Xia, and X. S. Liu, Phys. Rev. A, 82, 013411 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, Science, 314, 443–446 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    M. Nisoli and G. Sansone, Prog. Quantum Electron., 33, 17–59 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett., 19, 1870–1872 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, Nature, 453, 757–760 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    T. Shaaran, M. F. Ciappina, and M. Lewenstein, Phys. Rev. A, 87, 053415 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    T. Shaaran, M. F. Ciappina, and M. Lewenstein, Phys. Rev. A, 86, 023408 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    M. F. Ciappina, T. Shaaran, and M. Lewenstein, Ann. Phys., 525, 97–106 (2013).CrossRefGoogle Scholar
  30. 30.
    M. F. Ciappina, S. S. Acimovic, T. Shaaran, J. Biegert, R. Quidant, and M. Lewenstein, Opt. Express, 20, 26261–26274 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    I. Yavuz, Phys. Rev. A, 87, 053815 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    X. Y. Luo, H. F. Liu, S. Ben, and X. S. Liu, Acta Phys. Sin., 65, 123201 (2016).Google Scholar
  33. 33.
    S. Xue, D. C. Du, Y. Xia, and B. T. Hu, Chin. Phys. B, 24, 054210 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    L. Q. Feng, Mol. Phys., 114, 2217–2231 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    L. Q. Feng, Phys. Rev. A, 92, 053832 (2015).ADSCrossRefGoogle Scholar
  36. 36.
    I. Yavuz, Y. Tikman, and Z. Altun, Phys. Rev. A, 92, 023413 (2015).ADSCrossRefGoogle Scholar
  37. 37.
    I. Yavuz, M. F. Ciappina, A. Chacón, Z. Altun, M. F. Kling, and M. Lewenstein, Phys. Rev. A, 93, 033404 (2016).ADSCrossRefGoogle Scholar
  38. 38.
    H. Liu and L. Q. Feng, Opt. Quant. Electron., 47, 2577–2592 (2015).CrossRefGoogle Scholar
  39. 39.
    J. Hu, K. L. Han, and G. Z. He, Phys. Rev. Lett., 95, 123001 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    R. F. Lu, P. Y. Zhang, and K. L. Han, Phys. Rev. E, 77, 066701 (2008).ADSCrossRefGoogle Scholar
  41. 41.
    R. F. Lu, H. X. He, Y. H. Guo, and K. L. Han, J. Phys. B: At. Mol. Opt. Phys., 42, 225601 (2009).ADSCrossRefGoogle Scholar
  42. 42.
    L. Q. Feng, Y. B. Duan, and T. S. Chu, Ann. Phys. (Berlin), 525, 915–920 (2013).ADSCrossRefGoogle Scholar
  43. 43.
    K. Burnett, V. C. Reed, J. Cooper, and P. L. Knight, Phys. Rev. A, 45, 3347–3349 (1992).ADSCrossRefGoogle Scholar
  44. 44.
    P. Antoine, B. Piraux, and A. Maquet, Phys. Rev. A, 51, R1750–R1753 (1995).ADSCrossRefGoogle Scholar
  45. 45.
    J. Tate, T. Auguste, H. G. Huller, P. Salières, P. Agostini, and L. F. DiMauro, Phys. Rev. Lett., 98, 013901 (2007).ADSCrossRefGoogle Scholar
  46. 46.
    L. Q. Feng and T. S. Chu, Chem. Phys., 405, 26–31(2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceLiaoning University of TechnologyJinzhouChina
  2. 2.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, State Key Laboratory of Molecular Reaction DynamicsDalianChina
  3. 3.Xinjiang Institute of Engineering, Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region for New Energy MaterialsUrumqiChina

Personalised recommendations