Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 160–165 | Cite as

Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles

  • Jing Neng
  • Xujun Wang
  • Kan Jia
  • Peilong Sun

Fe3O4 nanoparticles were first modified with tetraethoxylsilane to form Fe3O4/SiO2 nanoparticles, followed by the addition of 3-aminopropyltriethoxysilane and 3-thiolpropyltriethoxysilane to introduce –NH2 and –SH groups to the surface of Fe3O4/SiO2 nanoparticles. Gold nanoparticles were further assembled on the surface of Fe3O4/SiO2 via the electrostatic adsorption of –NH2 and the Au–S bond to produce stable core–shell Fe3O4/SiO2/Au gold/magnetic nanoparticles. These Fe3O4/SiO2/Au gold/magnetic nanoparticles were characterized by a variety of techniques such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), and afterwards conjugated with tetrodotoxin antibodies (Ab) and used as a Raman active substrate (Fe3O4/SiO2/Au–Ab) with Rhodamine B (RhB)-labeled tetrodotoxin antibody as a Raman reporter (Ab–RhB). Upon mixing these reagents with tetrodotoxin (TTX), a sandwich complex [Fe3O4/SiO2/Au–Ab···TTX···Ab–RhB] was generated due to the specific antibody–antigen interactions. The immunocomplex was subsequently separated by an externally applied magnetic source and concentrated into a pellet point, where the laser interrogation of the pellet produced a strong signal characteristic of RhB. The logarithmic intensity of the signal was found to be proportional to the concentration of TTX with a limit of detection of 0.01 μg/mL and a detection linearity range of ~ 0.01–0.5 μg/mL. The established method eliminates the complicated procedures of traditional centrifuging, column separation, and incubation and achieves a rapid detection of tetrodotoxin with improved detection sensitivity.


surface-enhanced Raman spectroscopy rapid detection tetrodotoxin magnetic nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Ragelis, J. Assoc. Chem., 65, 327–331 (1982).Google Scholar
  2. 2.
    A. S. May, Chem. Ind., 24, 982–984 (1982).Google Scholar
  3. 3.
    T. Yasumoto, M. Nakamura, Y. Oshima, and J. Takahata, Bull. Jpn. Soc. Sci. Fish., 48, 1481–1483 (1982).CrossRefGoogle Scholar
  4. 4.
    J. Huang and M. J. Yan, Chem. Biotechnol. Lett., 17, 998–1000 (2006).Google Scholar
  5. 5.
    T. Nakayama and S. Tetrakawa, Anal. Biochem., 126, 153–155 (1982).CrossRefGoogle Scholar
  6. 6.
    T. Yasumato and T. Michishita, Agric. Biol. Chem., 49, 3077–3088 (1985).Google Scholar
  7. 7.
    M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Chem. Phys. Lett., 26, 163–166 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    D. L. Jeanmaire and R. P. V. Duyne, J. Electroanal. Chem., 84, 1–20 (1977).CrossRefGoogle Scholar
  9. 9.
    M. G. Albrecht and J. A. Creighton, J. Am. Chem., 99, 5215–5217 (2002).CrossRefGoogle Scholar
  10. 10.
    N. P. Pieczonka and R. F. Acora, Chem. Soc. Rev., 37, 946–954 (2008).CrossRefGoogle Scholar
  11. 11.
    X. Y. Zhang, J. Zhao, A. V. Whitney, J. W. Elan, and R. P. Duyne, J. Am. Chem. Soc., 128, 10304–10309 (2006).CrossRefGoogle Scholar
  12. 12.
    M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, Anal. Chem., 75, 6196–6201 (2003).CrossRefGoogle Scholar
  13. 13.
    Y. C. Cao, R. Jia, and C. A. Mirkin, Science, 297, 1536–1540 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    T. Park, S. Lee, G. H. Seong, J. Choo, E. K. Lee, Y. S. Kim, W. H. Ji, S. Y. Hwang, and D. G. Gweon, Lab Chip, 5, 437–442 (2005).CrossRefGoogle Scholar
  15. 15.
    M. Y. Sha, S. G. Penn, R. G. Freeman, and W. E. Doering, J. Nanobiotech., 3, 23–30 (2007).CrossRefGoogle Scholar
  16. 16.
    Y. C. Cao, R. Jia, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, J. Am. Chem. Soc., 125, 14676–14677 (2003).CrossRefGoogle Scholar
  17. 17.
    J. D. Driskell, J. M. Uhlenkamp, R. J. Lipert, and M. D. Porter, Anal. Chem., 79, 4141–4148 (2007).CrossRefGoogle Scholar
  18. 18.
    J. L. Gong, Y. Liang, Y. Huang, J. W. Chen, J. H. Jiang, G. L. Shen, and R. Q. Yu, Biosens. Bioelectron., 22, 1501–1507 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Neng, M. H. Harpster, H. Zhang, J. O. Mecham, W. C. Wilson, and P. Johnson, Biosens. Bioelectron., 26, 1009 (2010).CrossRefGoogle Scholar
  20. 20.
    J. Neng, M. H. Harpster, W. C. Wilson, and P. Johnson, Biosens. Bioelectron., 41, 316 (2013).CrossRefGoogle Scholar
  21. 21.
    A. P. Craig, A. S. Franca, and J. Irudayaraj, Annu. Rev. Food. Sci. Technol., 4, 369–380 (2013).CrossRefGoogle Scholar
  22. 22.
    J. Zheng and L. He, Comp. Rev. Food. Sci. Food Safety, 13, 317–329 (2014).CrossRefGoogle Scholar
  23. 23.
    Y. L. Wang, S. Ravindranath, and J. Irudayaraj, Anal. Bioanal. Chem., 399, 1271–1278 (2011).CrossRefGoogle Scholar
  24. 24.
    G. H. Mirzabe and A. R. Keshtkar, J. Ind. Eng. Chem., 26, 277–285 (2015).CrossRefGoogle Scholar
  25. 25.
    G. Frens, Nature, 241, 20–22 (1972).ADSGoogle Scholar
  26. 26.
    P. Boolchand, M. Jin, D. I. Novita, and S. Chakravarty, J. Raman Spectrosc., 38, 660–672 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ocean College, Zhejiang University of Technology, Department of Food Science аnd TechnologyZhejiangChina

Personalised recommendations