Skip to main content
Log in

Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles

  • Published:
Journal of Applied Spectroscopy Aims and scope

Fe3O4 nanoparticles were first modified with tetraethoxylsilane to form Fe3O4/SiO2 nanoparticles, followed by the addition of 3-aminopropyltriethoxysilane and 3-thiolpropyltriethoxysilane to introduce –NH2 and –SH groups to the surface of Fe3O4/SiO2 nanoparticles. Gold nanoparticles were further assembled on the surface of Fe3O4/SiO2 via the electrostatic adsorption of –NH2 and the Au–S bond to produce stable core–shell Fe3O4/SiO2/Au gold/magnetic nanoparticles. These Fe3O4/SiO2/Au gold/magnetic nanoparticles were characterized by a variety of techniques such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), and afterwards conjugated with tetrodotoxin antibodies (Ab) and used as a Raman active substrate (Fe3O4/SiO2/Au–Ab) with Rhodamine B (RhB)-labeled tetrodotoxin antibody as a Raman reporter (Ab–RhB). Upon mixing these reagents with tetrodotoxin (TTX), a sandwich complex [Fe3O4/SiO2/Au–Ab···TTX···Ab–RhB] was generated due to the specific antibody–antigen interactions. The immunocomplex was subsequently separated by an externally applied magnetic source and concentrated into a pellet point, where the laser interrogation of the pellet produced a strong signal characteristic of RhB. The logarithmic intensity of the signal was found to be proportional to the concentration of TTX with a limit of detection of 0.01 μg/mL and a detection linearity range of ~ 0.01–0.5 μg/mL. The established method eliminates the complicated procedures of traditional centrifuging, column separation, and incubation and achieves a rapid detection of tetrodotoxin with improved detection sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Ragelis, J. Assoc. Chem., 65, 327–331 (1982).

    Google Scholar 

  2. A. S. May, Chem. Ind., 24, 982–984 (1982).

    Google Scholar 

  3. T. Yasumoto, M. Nakamura, Y. Oshima, and J. Takahata, Bull. Jpn. Soc. Sci. Fish., 48, 1481–1483 (1982).

    Article  Google Scholar 

  4. J. Huang and M. J. Yan, Chem. Biotechnol. Lett., 17, 998–1000 (2006).

    Google Scholar 

  5. T. Nakayama and S. Tetrakawa, Anal. Biochem., 126, 153–155 (1982).

    Article  Google Scholar 

  6. T. Yasumato and T. Michishita, Agric. Biol. Chem., 49, 3077–3088 (1985).

    Google Scholar 

  7. M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Chem. Phys. Lett., 26, 163–166 (1974).

    Article  ADS  Google Scholar 

  8. D. L. Jeanmaire and R. P. V. Duyne, J. Electroanal. Chem., 84, 1–20 (1977).

    Article  Google Scholar 

  9. M. G. Albrecht and J. A. Creighton, J. Am. Chem., 99, 5215–5217 (2002).

    Article  Google Scholar 

  10. N. P. Pieczonka and R. F. Acora, Chem. Soc. Rev., 37, 946–954 (2008).

    Article  Google Scholar 

  11. X. Y. Zhang, J. Zhao, A. V. Whitney, J. W. Elan, and R. P. Duyne, J. Am. Chem. Soc., 128, 10304–10309 (2006).

    Article  Google Scholar 

  12. M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, Anal. Chem., 75, 6196–6201 (2003).

    Article  Google Scholar 

  13. Y. C. Cao, R. Jia, and C. A. Mirkin, Science, 297, 1536–1540 (2002).

    Article  ADS  Google Scholar 

  14. T. Park, S. Lee, G. H. Seong, J. Choo, E. K. Lee, Y. S. Kim, W. H. Ji, S. Y. Hwang, and D. G. Gweon, Lab Chip, 5, 437–442 (2005).

    Article  Google Scholar 

  15. M. Y. Sha, S. G. Penn, R. G. Freeman, and W. E. Doering, J. Nanobiotech., 3, 23–30 (2007).

    Article  Google Scholar 

  16. Y. C. Cao, R. Jia, J. M. Nam, C. S. Thaxton, and C. A. Mirkin, J. Am. Chem. Soc., 125, 14676–14677 (2003).

    Article  Google Scholar 

  17. J. D. Driskell, J. M. Uhlenkamp, R. J. Lipert, and M. D. Porter, Anal. Chem., 79, 4141–4148 (2007).

    Article  Google Scholar 

  18. J. L. Gong, Y. Liang, Y. Huang, J. W. Chen, J. H. Jiang, G. L. Shen, and R. Q. Yu, Biosens. Bioelectron., 22, 1501–1507 (2007).

    Article  Google Scholar 

  19. J. Neng, M. H. Harpster, H. Zhang, J. O. Mecham, W. C. Wilson, and P. Johnson, Biosens. Bioelectron., 26, 1009 (2010).

    Article  Google Scholar 

  20. J. Neng, M. H. Harpster, W. C. Wilson, and P. Johnson, Biosens. Bioelectron., 41, 316 (2013).

    Article  Google Scholar 

  21. A. P. Craig, A. S. Franca, and J. Irudayaraj, Annu. Rev. Food. Sci. Technol., 4, 369–380 (2013).

    Article  Google Scholar 

  22. J. Zheng and L. He, Comp. Rev. Food. Sci. Food Safety, 13, 317–329 (2014).

    Article  Google Scholar 

  23. Y. L. Wang, S. Ravindranath, and J. Irudayaraj, Anal. Bioanal. Chem., 399, 1271–1278 (2011).

    Article  Google Scholar 

  24. G. H. Mirzabe and A. R. Keshtkar, J. Ind. Eng. Chem., 26, 277–285 (2015).

    Article  Google Scholar 

  25. G. Frens, Nature, 241, 20–22 (1972).

    ADS  Google Scholar 

  26. P. Boolchand, M. Jin, D. I. Novita, and S. Chakravarty, J. Raman Spectrosc., 38, 660–672 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peilong Sun.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 1, p. 169, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neng, J., Wang, X., Jia, K. et al. Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles. J Appl Spectrosc 85, 160–165 (2018). https://doi.org/10.1007/s10812-018-0627-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0627-3

Keywords

Navigation