Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 155–159 | Cite as

Evaluation of Spin Hamiltonian Parameters and Local Structure of Cu2+-doped Ion in xK2SO4–(50 – x)Na2SO4–50ZnSO4 Glasses with Various K2SO4 Concentrations

  • Ch.-Ch. Ding
  • Sh.-Y. Wu
  • Y.-Q. Xu
  • L.-J. Zhang
  • J.-J. He
Article

The spin Hamiltonian parameters (SHPs), i.e., g factors and hyperfine structure constants, and local structures are theoretically studied by analyzing tetragonally elongated 3d9 clusters for Cu2+ in xK2SO4–(50 – x)Na2SO4–50ZnSO4 glasses with various K2SO4 concentrations x. The concentration dependences of the SHPs are attributed to the parabolic decreases of the cubic field parameter Dq, orbital reduction factor k, relative tetragonal elongation ratio τ, and core polarization constant κ with x. The [CuO6]10– clusters are found to undergo significant elongations of about 17% due to the Jahn–Teller effect. The calculated cubic field splittings and the SHPs at various concentrations agree well with the experimental data.

Keywords

electron paramagnetic resonance defect structures Cu2+ K2SO4 · Na2SO4 · ZnSO4 glasses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chaguetmia, A. Boutarfaia, and M. Poulain, Energy Proc., 74, 470–476 (2015).CrossRefGoogle Scholar
  2. 2.
    K. J. Rao, Bull. Mater. Sci., 2, 357–380 (1980).CrossRefGoogle Scholar
  3. 3.
    R. Rama Kumar, A. S. Rao, and B. C. Venkata Reddy, Opt. Mater., 4, 723–728 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    R. Rama Kumar, A. Srinivasa Rao, and B. C. Venkata Reddy, Transition Metal Chem., 21, 390–392 (1996).CrossRefGoogle Scholar
  5. 5.
    G. L. Narendra, B. Sreedhar, J. Lakshmana Rao, and S. V. J. Lakshman, J. Mater. Sci., 26, 5342–5346 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    R. Rama Kumar and B. C. Venkata Reddy, Radiat. Eff. Defects Solids, 147, 293–302 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    L. H. Xie and Y. Y. Yeung, Appl. Magn. Reson., 40, 441–448 (2011).CrossRefGoogle Scholar
  8. 8.
    A. Srinivasa Rao, J. Lakshmana Rao, R. Ramakrishna Reddy, and T. V. Ramakrishna Rao, Opt. Mater., 4, 717–721 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    R. R. Kumar, A. K. Bhatnagar, and B. C. V. Reddy, Solid State Commun., 114, 493–497 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    T. H. Chen and Y. Wu, P. Luo, Radiat. Eff. Defects Solids, 162, 633–636 (2007).CrossRefGoogle Scholar
  11. 11.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London (1986).Google Scholar
  12. 12.
    A. S. Chakravarty, Introduction to the Magnetic Properties of Solids, Wiley-Interscience, New York (1980).Google Scholar
  13. 13.
    Y. V. Yablokov and T. A. Ivanova, Coord. Chem. Rev., 190192, 1255–1267 (1999).Google Scholar
  14. 14.
    S.O. Graham and R.L. White, Phys. Rev. B, 10, 4505–4509 (1974).ADSCrossRefGoogle Scholar
  15. 15.
    S. Y. Wu, H. M. Zhang, P. Xu, and S. X. Zhang, Spectrochim. Acta A, 75, 230–234 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    H. M. Zhang, S. Y. Wu, M. Q. Kuang, Z. H. Zhang, J. Phys. Chem. Solids, 73, 846–850 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    D. J. Newman and B. Ng, Rep. Prog. Phys., 52, 699–763 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    H. M. Zhang, S. Y. Wu, G. D. Lu, Z. H. Zhang, and L. H. Wei, Radiat. Eff. Defects Solids, 163, 789–794 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    S. Y. Wu, H. N. Dong, H. M. Zhang, and G. D. Lu, Phys. Scr., 77, 025703(1–7) (2008).Google Scholar
  20. 20.
    Y. X. Hu, S. Y. Wu, and X. F. Wang, Philos. Mag. A, 90, 1391–1400 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    S. Y. Wu and H. N. Dong, J. Alloys Compd., 451, 248–250 (2008).CrossRefGoogle Scholar
  22. 22.
    X. F. Wang, S. Y. Wu, Z. H. Zhang, L. H. Wei, and Y. X. Hu, Mod. Phys. Lett. B, 22, 1381–1387 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    M. A. Hassan, M. Farouk, A. H. Abdulah, I. Kashef, and M. M. Elokr, J. Alloys Compd., 539, 233–236 (2012).CrossRefGoogle Scholar
  24. 24.
    C. K. Jørgensen, Absorption Spectra and Chemical Bonding in Molecules, 2nd ed., Pergamon Press Oxford, London, New York, and Paris (1964).Google Scholar
  25. 25.
    J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London (1964).zbMATHGoogle Scholar
  26. 26.
    B. R. McGarvey, J. Phys. Chem., 71, 51–67 (1967).CrossRefGoogle Scholar
  27. 27.
    A. Abragam and M. H. I. Pryce, Proc. Roy. Soc. (London) A, 206, 164–172 (1951).ADSCrossRefGoogle Scholar
  28. 28.
    A. W. Addison, in: Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, Eds. K. D. Karlin and J. Zubieta, Adenine Press, New York (1983).Google Scholar
  29. 29.
    Y. Wu and Z. Chen, Radiat. Eff. Defects Solids, 169, 485–489 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    M. Q. Kuang, S. Y. Wu, G. L. Li, and X. F. Hu, Mol. Phys., 113, 698–702 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    H. M. Zhang and X. Wan, J. Non-Cryst. Solids, 361, 43–46 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    J. L. Rao, G. Sivaramaiah, and O. Gopal, Physica B, 349, 206–213 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    R. V. S. S. N. Ravikumar, R. Komatsu, K. Ikeda, A. V. Chandrasekhar, L. Ramamoorthy, B. J. Reddy, Y. P. Reddy, and P. S. Rao, Physica B, 334, 398–402 (2003).ADSCrossRefGoogle Scholar
  34. 34.
    G. Ramadevudu, M. Shareefuddin, N. S. Bai, M. L. Rao, and M. N. Chary, J. Non-Cryst. Solids, 278, 205–212 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    Y. Q. Xu, S. Y. Wu, M. Q. Kuang, X. F. Hu, C. C. Ding, J. Non-Cryst. Solids, 432, 535–539 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of China, School of Physical ElectronicsChengduChina

Personalised recommendations