Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 143–148 | Cite as

Improved Diffraction Efficiency of Polarization-Sensitive Azobenzene-Containing Copolymers in an Electric Field

  • N. A. Davidenko
  • I. I. Davidenko
  • E. V. Mokrinskaya
  • V. A. Pavlov
  • S. L. Studzinsky
  • V. V. Tarasenko
  • L. S. Tonkopieva
  • N. G. Chuprina
Article

Recording media for polarization holography based on new azobenzene-containing monomers with octylmethacrylate are created. Their electrophysical and information properties are investigated. Improvement of the diffraction efficiency of holograms in these media in an external electric field formed by charging the free surface of the polymer film in a corona discharge is demonstrated. The diffraction efficiency is improved more in the copolymer, in which the azobenzene fragments possess larger dipole moments.

Keywords

azopolymers polarization holography improving diffraction efficiency dipole relaxation corona discharge surface relief 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Davidenko, N. A. Davidenko, I. A. Savchenko, and V. G. Syromyatnikov, Zh. Prikl. Spektrosk., 72, No. 4, 499–503 (2005) [I. I. Davidenko, N. A. Davidenko, I. A. Savchenko, and V. G. Syromyatnikov, J. Appl. Spectrosc., 72, No. 4, 541–546 (2005)].Google Scholar
  2. 2.
    N. A. Davidenko, I. I. Davidenko, I. A. Savchenko, A. N. Popenaka, and A. A. Yandyuk, Opt. Spektrosk., 101, No. 6, 966–973 (2006).CrossRefGoogle Scholar
  3. 3.
    N. A. Davidenko, I. A. Savchenko, I. I. Davidenko, A. N. Popenaka, A. N. Shumelyuk, and V. A. Bedarev, Zh. Tekh. Fiz., 77, No. 4, 60–64 (2007).Google Scholar
  4. 4.
    Sh. D. Kakichashvili, Polarization Holography [in Russian], Nauka, Leningrad (1989).Google Scholar
  5. 5.
    L. Nikolova and P. S. Ramanujam, Polarization Holography, Cambridge Univ. Press, Cambridge (2009).CrossRefGoogle Scholar
  6. 6.
    A. Priimagi and A. Shevchenko, J. Polym. Sci., Part B: Polym. Phys., 52, No. 3, 163–182 (2014).CrossRefGoogle Scholar
  7. 7.
    A. N. Simonov, D. V. Uraev, S. G. Kostromin, V. P. Shibaev, and A. I. Stakhanov, Laser Phys., 12, 1294–1299 (2002).Google Scholar
  8. 8.
    C. Cojocariu and P. Rochon, Macromolecules, 38, 9526–9532 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    N. Davidenko, I. Davidenko, A. Ishchenko, A. Kulinich, V. Pavlov, S. Studzinsky, and N. Chuprina, Appl. Opt., 51, C48–C54 (2012).CrossRefGoogle Scholar
  10. 10.
    N. A. Davidenko, Yu. P. Getmanchuk, E. V. Mokrinskaya, L. R. Kunitskaya, I. I. Davidenko, V. A. Pavlov, S. L. Studzinsky, and N. G. Chuprina, Appl. Opt., 53, No. 10, B242–B247 (2014).CrossRefGoogle Scholar
  11. 11.
    N. A. Davidenko, I. I. Davidenko, S. L. Studzinsky, V. A. Pavlov, E. V. Mokrinskaya, N. G. Chuprina, and V. V. Kravchenko, Appl. Opt., 55, No. 12, B31–B35 (2016).CrossRefGoogle Scholar
  12. 12.
    K. Schwetlick, Organicum, Wiley-VCH Verlag GmbH, Weinheim (2001).Google Scholar
  13. 13.
    M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett., 58, 2921–2923 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    R. J. Collier, C. B. Burckhart, and L. H. Lin, Optical Holography, Academic Press, New York, London (1973).Google Scholar
  15. 15.
    A. M. Nastas, Opt. Spectrosc., 95, No. 6, 952–955 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Davidenko
    • 1
  • I. I. Davidenko
    • 1
  • E. V. Mokrinskaya
    • 1
  • V. A. Pavlov
    • 1
  • S. L. Studzinsky
    • 1
  • V. V. Tarasenko
    • 1
  • L. S. Tonkopieva
    • 1
  • N. G. Chuprina
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations