Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 126–133 | Cite as

Application of Integral Optical Flow for Determining Crowd Movement from Video Images Obtained Using Video Surveillance Systems

  • H. Chen
  • Sh. Ye
  • O. V. Nedzvedz
  • S. V. Ablameyko
Article
  • 13 Downloads

Study of crowd movement is an important practical problem, and its solution is used in video surveillance systems for preventing various emergency situations. In the general case, a group of fast-moving people is of more interest than a group of stationary or slow-moving people. We propose a new method for crowd movement analysis using a video sequence, based on integral optical flow. We have determined several characteristics of a moving crowd such as density, speed, direction of motion, symmetry, and in/out index. These characteristics are used for further analysis of a video scene.

Keywords

integral optical flow motion analysis crowd movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. S. Jacques, Jr., S. R. Musse, and C. R. Jung, IEEE Signal Proc. Magaz., 27, No. 5, 66–77 (2010).ADSGoogle Scholar
  2. 2.
    J. Shao, C. Loy, K. Kang, and X. Wang, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 5629–5628.Google Scholar
  3. 3.
    R. Mehran, A. Oyama, and M. Shah, in: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2009), pp. 935–942.Google Scholar
  4. 4.
    S. Ali and M. Shah, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–6.Google Scholar
  5. 5.
    B. Solmaz, B. E. Moore, and M. Shah, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, No. 10, 2064–2070 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Niranjil Kumar and C. Sureshkumar, Int. J. Adv. Res. Comput. Commun. Eng., 3, No. 9, 7935–7939 (2014).Google Scholar
  7. 7.
    Shipra Ojha and S. R. Sakhare, Int. J. Sci. Eng. Res., 6, No. 6, 1119–1123 (2015).Google Scholar
  8. 8.
    N. A. Sjarif, S. M. Shamsuddin, and S. Z. Hashim, Int. J. Adv. Software Comput. Appl., 4, No. 1, 1–33 (2012).Google Scholar
  9. 9.
    B. K. Horn and B. G. Schunck, Artificial Intelligence, 17, Nos. 1–3, 185–203 (1981).CrossRefGoogle Scholar
  10. 10.
    G. Farnebäck, in: Scandinavian Conference on Image Analysis (2003), pp. 363–370.Google Scholar
  11. 11.
    C. Chen, S. Ye, H. Chen, O. V. Nedzvedz, and S. V. Ablameyko, Zh. Prikl. Spektrosk., 84, No. 1, 138–146 (2017) [C. Chen, S. Ye, H. Chen, O. Nedzvedz, and S. Ablameyko, J. Appl. Spectrosc., 84, No. 1, 120–128 (2017) (English translation)].Google Scholar
  12. 12.
    P. Allain, N. Courty, and T. Corpetti, in: Proc. First ICPR International Workshop on Pattern Recognition and Crowd Analysis, November 2012 (2012), pp. 1–6.Google Scholar
  13. 13.
    N. Courty, P. Allain, C. Creusot, and T. Corpetti, Pattern Recognition Lett., 44, No. 8, 161–170 (2014).CrossRefGoogle Scholar
  14. 14.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhejiang Shuren UniversityHangzhouChina
  2. 2.Belarusian State Medical UniversityMinskBelarus
  3. 3.Belarusian State UniversityMinskBelarus
  4. 4.The United Institute of Informatics ProblemsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations