Skip to main content
Log in

Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

  • Published:
Journal of Applied Spectroscopy Aims and scope

A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jianjun Liu, Lili Mao, Jinfeng Ku, and Jun He, Opt. Quantum Electron., 48, No. 2, 167–173 (2016).

    Article  Google Scholar 

  2. Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, Yong Du, and Haitao Xin, J. Appl. Spectrosc., 82, No. 1, 104–110 (2015).

    Article  ADS  Google Scholar 

  3. Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, Yong Du, and Haitao Xin, Opt. Spectrosc., 118, No. 1, 175–180 (2015).

    Article  ADS  Google Scholar 

  4. Jianjun Liu and Zhi Li, Optik, 125, No. 23, 6867–6869 (2014).

    Article  ADS  Google Scholar 

  5. K. Nakamura, H. Akiyama, N. Kawano, T. Kobayashi, K. Yoshimatsu, J. Mano, K. Kitta, K. Ohmori, A. Noguchi, K. Kondo, and R. Teshima, Food Chem., 141, 2618–2624 (2013).

    Article  Google Scholar 

  6. M. Vaitilingom, H. Pijnenburg, F. Gendre, and P. Brignon, J. Agr. Food Chem., 47, 5261–5266 (1999).

    Article  Google Scholar 

  7. G. Shan, S. K. Embrey, and B. W. Schafer, J. Agr. Food Chem., 55, 5974–5979 (2007).

    Article  Google Scholar 

  8. G. Liu, W. Su, Q. Xu, M. Long, and J. Zhou, S. Song, Food Control, 15, 303–306 (2004).

    Article  Google Scholar 

  9. Y. C. Shen, P. F. Taday, and M. C. Kemp, Proc. SPIE, 5619, 82–89 (2004).

    Article  ADS  Google Scholar 

  10. A. D. Burnett, W. H. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. Edwards, E. H. Linfield, and A. G. Davies, Analyst, 134, 1658–1668 (2009).

    Article  ADS  Google Scholar 

  11. J. El Haddad, F. de Miollis, J. Bou Sleiman, L. Canioni, P. Mounaix, and B. Bousquet, Anal. Chem., 86, 4927–4933 (2014).

    Article  Google Scholar 

  12. H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, J. Pharm. Sci., 97, 970–984 (2008).

    Article  Google Scholar 

  13. Jianjun Liu and Lanlan Fan, Int. J. Light Electron Opt., 127, 1957–1961 (2016).

    Article  Google Scholar 

  14. Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, and Aijun Zhu, Opt. Quantum Electron., 47, No. 2, 313–322 (2015).

    Article  Google Scholar 

  15. Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, and Aijun Zhu, Optik, 125, No. 23, 6914–6919 (2014).

    Article  ADS  Google Scholar 

  16. Li Tiejun, Liu Jianjun, Shao Guifeng, and Fan Lanlan, Opt. Spectrosc., 120, No. 4, 660–665 (2016).

    Article  Google Scholar 

  17. S. Shrestha, F. Kazama, and T. Nakamura, J. Hydroinform., 10, 43–56 (2008).

    Article  Google Scholar 

  18. C. Kandemir-Cavas and E. Nasibov, Turk. J. Biol., 37, 54–61 (2012).

    Article  Google Scholar 

  19. Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, Aijun Zhu, Yong Du, and Haitao Xin, Optik, 126, No. 19, 1872–1877 (2015).

    Article  ADS  Google Scholar 

  20. L. Xie, Y. Ying, T. Ying, H. Yu, and X. Fu, Anal. Chim. Acta, 584, 379–384 (2007).

    Article  Google Scholar 

  21. G. B. Alcântara, A. Bsrison, M. S. Santos, L. P. S. Santos, J. F. F. Toledo, and A. G. Ferreira, Orbital–Electron. J. Chem., 2, 41–52 (2010).

    Google Scholar 

  22. M. D. Salvador, A. M. Inarejos-Garcia, S. Gómez-Alonso, and G. Fregapane, Food Res. Int., 50, 250–258 (2013).

    Article  Google Scholar 

  23. R. Aparicio, M. T. Morales, R. Aparicio-Ruiz, N. Tena, and D. L. García-González, Food Res. Int., 54, 2025–2038 (2013).

    Article  Google Scholar 

  24. A. Koidis, M. T. Osorio, S. A. Haughey, and C. T. Elliott, Food Res. Int., 60, 66–75 (2014).

    Article  Google Scholar 

  25. C. A. Nunes, Food Res. Int., 60, 255–261 (2014).

    Article  Google Scholar 

  26. R. G. Brereton, Chemometrics for Pattern Recognition, Chichester, John Wiley and Sons Ltd. (2009).

    Book  Google Scholar 

  27. M. J. C. Pontes, R. K. H. Galvão, M. C. U. Araújo, P. N. T. Moreira, O. D. P. Neto, G. E. José, and T. C. B. Saldanha, Chemometr. Intell. Lab. Syst., 78, 11–18 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liu.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 1, pp. 129–134, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xie, H., Zha, B. et al. Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics. J Appl Spectrosc 85, 119–125 (2018). https://doi.org/10.1007/s10812-018-0621-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0621-9

Keywords

Navigation