Skip to main content
Log in

Component Analysis and Identification of Black Tahitian Cultured Pearls From the Oyster Pinctada margaritifera Using Spectroscopic Techniques

  • Published:
Journal of Applied Spectroscopy Aims and scope

Raman spectroscopy, ultraviolet, visible, and near infrared (UV–Vis–NIR) reflectance spectroscopy, and X-ray fluorescence (XRF) spectroscopy were used to characterize black Tahitian cultured pearls and imitations of these saltwater cultured pearls produced by γ-irradiation, and by coloring of cultured pearls with silver nitrate or organic dyes. Raman spectra indicated that aragonite was the major constituent of these four types of pearl. Using Raman spectroscopy at an excitation wavelength of 514 nm, black Tahitian cultured pearls exhibited characteristic 1100–1700 cm–1 bands. These bands were attributed to various organic components, including conchiolin and other black biological pigments. The peaks shown by saltwater cultured pearls colored with organic dyes varied with the type of dye used. Tahitian cultured and organic-dye-treated saltwater cultured pearls were easily identified by Raman spectroscopy. UV–Vis–NIR reflectance spectra showed bands at 408, 497, and 700 nm derived from porphyrin pigment and other black pigments. The spectra of dye-treated black saltwater pearls showed absorption peaks at 216, 261, 300, and 578 nm. The 261-nm absorption band disappeared from the spectra of γ-irradiated saltwater cultured pearls. This suggests the degradation of conchiolin in the γ-irradiated saltwater cultured pearls. XRF analysis revealed the presence of Ag on the surface of silver nitrate-dyed saltwater cultured pearls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-C. Southgate and A.-C. Beer, Aquaculture, 187, 97–104 (2000).

    Article  Google Scholar 

  2. S. Karampelas, E. Fritsch, J.-P. Gauthier, and T. Hainschwang, G&G, 47, 31–35 (2011).

    Article  Google Scholar 

  3. H. Wang, X. W. Zhu, Y. N. Wang, M. M. Luo, and Z. G. Liu, Aquaculture, 358359, 292–297 (2012).

  4. J. T. Wang, J. L. Liang, and M. S. Peng, Bull Miner. Petrol. Geochem., 18, 407–409 (1999).

    Google Scholar 

  5. J.-J. Myeong, J.-L. Sang, K. Yuri, G.-S. Jun, Y.-K. Hae, L. Yiheng, Y. Yoshiaki, and H.-L. Byeong, Opt Express, 19, 6420–6432 (2011).

    Article  Google Scholar 

  6. M. Yasunori and M. Tadaki, Jpn. J. Appl. Phys., 27, 235–239 (1988).

    Google Scholar 

  7. D. Habermann, A. Banerjee, J. Meijer, and A. Stephan, Nucl. Instrum. Methods Phys. Res., B181, 739–743 (2001).

    Article  ADS  Google Scholar 

  8. S. Karampelas, E. Fritsch, J.-Y. Mevellec, J.-P. Gauthier, S. Sklavounos, and T. Soldatos, J. Raman Spectrosc., 38, 217–230 (2007).

    Article  ADS  Google Scholar 

  9. J. Urmons, S.-K. Sharma, and F.-T. Mackenzie, Am. Mineral., 76, 641–646 (1991).

    Google Scholar 

  10. R.-W. Gauldie, S.-K. Sharma, and E. Volk, Comp. Biochem. Physiol., 118A, No. 3, 753–757 (1997).

    Article  Google Scholar 

  11. Y. L. Huang, J. G&G, 8, 5–8 (2006).

    Google Scholar 

  12. W. D. Liu, J. G&G, 5, 124–127 (2003).

    Google Scholar 

  13. G. Ismael, J. Alberto, I. Kazuma, T. Keisuke, S. Francisco, and W. Kazumasa, Pigment Cell Melanoma Res., 26, 917–923 (2013).

    Article  Google Scholar 

  14. Y. Liu, T.J. Lu, M. Tao, H. Chen, and J. Ke, Color Res. Appl., 38, 328–333 (2013).

    Article  Google Scholar 

  15. C. Blay, M. Sham-Koua, V. Vonau, R. Tetumu, P. Cabral, and C. L. Ky, Aquacult. Int., 22, 937–953 (2014).

    Article  Google Scholar 

  16. L. J. Qi, Y. L. Huang, and C. G. Zeng, J. G&G, 10, 20–24 (2008).

    Google Scholar 

  17. S. A. Davidenko, M. V. Kurik, Y. P. Piryatinskii, and A. B. Verbitsky, Mol. Cryst. Liq. Cryst., 426, 37–45 (2005).

    Article  Google Scholar 

  18. M. Paul and S. Tadeusz, Pigment Cell Res., 19, 572–594 (2006).

    Article  Google Scholar 

  19. L. P. Li and Z. H. Chen, J. G&G, 4, 16–21 (2002).

    Google Scholar 

  20. J.-P. Cuif, Y. Dauphin, C. Stoppa, and S. Beeck, Rev. Gemmol. AFG, 115, 9–11 (1993).

    Google Scholar 

  21. Y. Dauphin and J.-P. Cuif, Aquaculture, 133, 113–121 (1995).

    Article  Google Scholar 

  22. S. Elen, G&G, 38, 66–72 (2003).

    Article  Google Scholar 

  23. W. Wang, K. Scarratt, A. Hyatt, A.-H.-T. Shen, and M. Hall, G&G, 42, 222–235 (2006).

    Article  Google Scholar 

  24. Y. Iwahashi and S. Akamatsu, Fish Sci., 60, 69–71 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Shi.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 1, pp. 108–112, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Wang, Y., Liu, X. et al. Component Analysis and Identification of Black Tahitian Cultured Pearls From the Oyster Pinctada margaritifera Using Spectroscopic Techniques. J Appl Spectrosc 85, 98–102 (2018). https://doi.org/10.1007/s10812-018-0618-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0618-4

Keywords

Navigation